IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1494-d1614585.html
   My bibliography  Save this article

Investigation and Evaluation of Geothermal Resources in Northern Shanxi Province, China

Author

Listed:
  • Zhongxu Lu

    (College of Earth Sciences, Guilin University of Technology, Guilin 541004, China)

  • Yang Yang

    (Department of Geology and Surveying Engineering, Shanxi Institute of Energy, Jinzhong 030600, China)

  • Yajun Mo

    (Geophysical Survey Institute of Guangxi Zhuang Autonomous Region, Liuzhou 541006, China)

  • Haizhi Liao

    (Geophysical Survey Institute of Guangxi Zhuang Autonomous Region, Liuzhou 541006, China)

  • Youlian Cai

    (Guangxi Shuangke Construction Engineering Consulting Co., Ltd., Nanning 530009, China)

Abstract

In this study, survey methods including seismic techniques and controlled-source audio-frequency magnetotelluric, drilling, and pumping tests were employed to investigate the geothermal systems and their formation mechanisms in northern Shanxi Province, China. The following characteristics were observed: (1) Geothermal resources in northern Shanxi Province are primarily located in Archean metamorphic rocks and fracture zone aquifer groups. The direct heat source is likely uncooled magma chambers in the middle-upper crust, whereas the overlying layers consist of Quaternary, Neogene, and Paleogene deposits. (2) The high-temperature geothermal system is of the convective-conductive type: atmospheric precipitation and surface water infiltrate pore spaces and fault fractures to reach thermal storage, where they are heated. Hot water then rises along the fracture channels and emerges as shallow hot springs, and ongoing extensional tectonic activity has caused asthenospheric upwelling. The partial melting of the upper mantle forms basic basaltic magma, which ascends to the middle-upper crust and forms multiple magma chambers. Their heat is transferred to the shallow subsurface, causing geothermal anomalies. (3) Borehole YG-1 findings revealed that these geothermal resources are primarily static reserves. Our findings provide a foundation for further geothermal development in the region, including the strategic deployment of wells to improve geothermal energy extraction.

Suggested Citation

  • Zhongxu Lu & Yang Yang & Yajun Mo & Haizhi Liao & Youlian Cai, 2025. "Investigation and Evaluation of Geothermal Resources in Northern Shanxi Province, China," Energies, MDPI, vol. 18(6), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1494-:d:1614585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yongge & Hou, Jian & Zhao, Haifeng & Liu, Xiaoyu & Xia, Zhizeng, 2018. "A method to recover natural gas hydrates with geothermal energy conveyed by CO2," Energy, Elsevier, vol. 144(C), pages 265-278.
    2. Yansong Yang & Zhouhang Li & Hua Wang, 2025. "Experimental Study on the Influence of Ion Components in Geothermal Water on Scaling Behavior," Energies, MDPI, vol. 18(4), pages 1-28, February.
    3. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Shuai & Lin, Duotong & Dong, Jiankai & Li, Ji, 2025. "Effects of building load characteristics on heating performance of the medium-deep U-type borehole heat exchanger coupled heat pumps: A coupled dynamic simulation," Applied Energy, Elsevier, vol. 377(PA).
    2. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    3. Wan, Kun & Wu, Tian-Wei & Wang, Yi & Li, Xiao-Sen & Liu, Jian-Wu & Kou, Xuan & Feng, Jing-Chun, 2023. "Large-scale experimental study of heterogeneity in different types of hydrate reservoirs by horizontal well depressurization method," Applied Energy, Elsevier, vol. 332(C).
    4. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    5. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    6. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    7. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    8. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Zhou, Xiang & Yuan, Qingwang & Rui, Zhenhua & Wang, Hanyi & Feng, Jianwei & Zhang, Liehui & Zeng, Fanhua, 2019. "Feasibility study of CO2 huff 'n' puff process to enhance heavy oil recovery via long core experiments," Applied Energy, Elsevier, vol. 236(C), pages 526-539.
    10. Yuan, Meng & Vad Mathiesen, Brian & Schneider, Noémi & Xia, Jianjun & Zheng, Wen & Sorknæs, Peter & Lund, Henrik & Zhang, Lipeng, 2024. "Renewable energy and waste heat recovery in district heating systems in China: A systematic review," Energy, Elsevier, vol. 294(C).
    11. Liu, Yongge & Hou, Jian & Chen, Zhangxin & Bai, Yajie & Su, Haiyang & Zhao, Ermeng & Li, Guangming, 2021. "Enhancing hot water flooding in hydrate bearing layers through a novel staged production method," Energy, Elsevier, vol. 217(C).
    12. Xie, Yingchun & Nie, Yutai & Li, Tailu & Zhang, Yao & Wang, Jingyi, 2023. "Flash evaporation strategy of organic Rankine cycle for geothermal power performance enhancement: A case study," Renewable Energy, Elsevier, vol. 212(C), pages 57-69.
    13. Schifflechner, Christopher & de Reus, Jasper & Schuster, Sebastian & Corpancho Villasana, Andreas & Brillert, Dieter & Saar, Martin O. & Spliethoff, Hartmut, 2024. "Paving the way for CO2-Plume Geothermal (CPG) systems: A perspective on the CO2 surface equipment," Energy, Elsevier, vol. 305(C).
    14. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    15. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Al-Nimr, Moh'd A. & Dawahdeh, Ahmad I. & Ali, Hussain A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a solar pond and underground heat exchanger," Renewable Energy, Elsevier, vol. 189(C), pages 663-675.
    17. Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
    18. Yibo Wang & Lijuan Wang & Yang Bai & Zhuting Wang & Jie Hu & Di Hu & Yaqi Wang & Shengbiao Hu, 2021. "Assessment of Geothermal Resources in the North Jiangsu Basin, East China, Using Monte Carlo Simulation," Energies, MDPI, vol. 14(2), pages 1-17, January.
    19. Yang, Weifei & Xiao, Changlai & Zhang, Zhihao & Liang, Xiujuan, 2022. "Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network," Renewable Energy, Elsevier, vol. 182(C), pages 32-42.
    20. Yang, Bo & Swe, Thidar & Chen, Yixuan & Zeng, Chunyuan & Shu, Hongchun & Li, Xin & Yu, Tao & Zhang, Xiaoshun & Sun, Liming, 2021. "Energy cooperation between Myanmar and China under One Belt One Road: Current state, challenges and perspectives," Energy, Elsevier, vol. 215(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1494-:d:1614585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.