IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1397-d1610504.html
   My bibliography  Save this article

A Review of Operational Conditions of the Agroforestry Residues Biomethanization for Bioenergy Production Through Solid-State Anaerobic Digestion (SS-AD)

Author

Listed:
  • Dhaouefi Zaineb

    (Environmental and Biotechnology Research Group, Cégep de Rivière-du-Loup, 80, Rue Frontenac, Rivière-du-Loup, QC G5R 1R1, Canada
    Rouyn-Noranda Campus, University of Quebec in Abitibi-Témiscamingue (UQAT), 445, Boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada
    These authors contributed equally to this work.)

  • Lecoublet Morgan

    (Rouyn-Noranda Campus, University of Quebec in Abitibi-Témiscamingue (UQAT), 445, Boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada
    These authors contributed equally to this work.)

  • Taktek Salma

    (Environmental and Biotechnology Research Group, Cégep de Rivière-du-Loup, 80, Rue Frontenac, Rivière-du-Loup, QC G5R 1R1, Canada)

  • Lafontaine Simon

    (Rouyn-Noranda Campus, University of Quebec in Abitibi-Témiscamingue (UQAT), 445, Boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada)

  • LeBihan Yann

    (Investissement Québec, 333 Rue Franquet, Québec, QC G1P 4C7, Canada)

  • Braghiroli Flavia Lega

    (Rouyn-Noranda Campus, University of Quebec in Abitibi-Témiscamingue (UQAT), 445, Boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada)

  • Horchani Habib

    (Environmental and Biotechnology Research Group, Cégep de Rivière-du-Loup, 80, Rue Frontenac, Rivière-du-Loup, QC G5R 1R1, Canada
    Rouyn-Noranda Campus, University of Quebec in Abitibi-Témiscamingue (UQAT), 445, Boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada)

  • Koubaa Ahmed

    (Rouyn-Noranda Campus, University of Quebec in Abitibi-Témiscamingue (UQAT), 445, Boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada)

Abstract

Agroforestry residues are a promising source of organic matter and energy. These organic wastes are often poorly managed by incineration or open-air composting, resulting in the emission of greenhouse gases. Solid-state anaerobic digestion has recently attracted considerable attention to converting organic waste with a high total solids content, such as agroforestry residues, into renewable energy. However, the complex structure of these residues is still a defiance to this technology. Their degradation requires a long period, resulting in low heat and mass transfer. In addition, the process is often inhibited by the accumulation of toxic compounds. An efficient management process has remained under development. Comprehending the challenges faced when treating agroforestry waste is necessary to create practical applications. This review provides essential information for more effective management of complex agricultural and forestry residues using the SS-AD process. It covers the different parameters and experiments that have successfully managed these residues for renewable energy production. Various solutions have been identified to overcome the drawbacks encountered. These include co-digestion, which brings together different residues for better sustainability, and the strategies used to improve energy production from these residues at different levels, involving efficient pretreatments and appropriate operational reactor designs.

Suggested Citation

  • Dhaouefi Zaineb & Lecoublet Morgan & Taktek Salma & Lafontaine Simon & LeBihan Yann & Braghiroli Flavia Lega & Horchani Habib & Koubaa Ahmed, 2025. "A Review of Operational Conditions of the Agroforestry Residues Biomethanization for Bioenergy Production Through Solid-State Anaerobic Digestion (SS-AD)," Energies, MDPI, vol. 18(6), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1397-:d:1610504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Huan & Jin, Chang & Zhang, Zhanying & O'Hara, Ian & Mundree, Sagadevan, 2017. "Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways," Energy, Elsevier, vol. 126(C), pages 649-657.
    2. Ajayi-Banji, A. & Rahman, S., 2022. "A review of process parameters influence in solid-state anaerobic digestion: Focus on performance stability thresholds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Dar, R.A. & Parmar, M. & Dar, E.A. & Sani, R.K. & Phutela, U.G., 2021. "Biomethanation of agricultural residues: Potential, limitations and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Alonso Albalate-Ramírez & Mónica María Alcalá-Rodríguez & Luis Ramiro Miramontes-Martínez & Alejandro Padilla-Rivera & Alejandro Estrada-Baltazar & Brenda Nelly López-Hernández & Pasiano Rivas-García, 2022. "Energy Production from Cattle Manure within a Life Cycle Assessment Framework: Statistical Optimization of Co-Digestion, Pretreatment, and Thermal Conditions," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    5. Ardolino, F. & Cardamone, G.F. & Parrillo, F. & Arena, U., 2021. "Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Jinming Liu & Changhao Zeng & Na Wang & Jianfei Shi & Bo Zhang & Changyu Liu & Yong Sun, 2021. "Rapid Biochemical Methane Potential Evaluation of Anaerobic Co-Digestion Feedstocks Based on Near Infrared Spectroscopy and Chemometrics," Energies, MDPI, vol. 14(5), pages 1-17, March.
    7. Grigorios Rekleitis & Katherine-Joanne Haralambous & Maria Loizidou & Konstantinos Aravossis, 2020. "Utilization of Agricultural and Livestock Waste in Anaerobic Digestion (A.D): Applying the Biorefinery Concept in a Circular Economy," Energies, MDPI, vol. 13(17), pages 1-14, August.
    8. Gahyun Baek & Danbee Kim & Jinsu Kim & Hanwoong Kim & Changsoo Lee, 2020. "Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect," IJERPH, MDPI, vol. 17(13), pages 1-13, July.
    9. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehta, Neha & Anderson, Aine & Johnston, Christopher R. & Rooney, David W., 2022. "Evaluating the opportunity for utilising anaerobic digestion and pyrolysis of livestock manure and grass silage to decarbonise gas infrastructure: A Northern Ireland case study," Renewable Energy, Elsevier, vol. 196(C), pages 343-357.
    2. Li, Wangliang & Gupta, Rohit & Zhang, Zhikai & Cao, Lixia & Li, Yanqing & Show, Pau Loke & Gupta, Vijai Kumar & Kumar, Sunil & Lin, Kun-Yi Andrew & Varjani, Sunita & Connelly, Stephanie & You, Siming, 2023. "A review of high-solid anaerobic digestion (HSAD): From transport phenomena to process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. Becker, C.M. & Marder, M. & Junges, E. & Konrad, O., 2022. "Technologies for biogas desulfurization - An overview of recent studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Rahul Kadam & Sangyeol Jo & Jonghwa Lee & Kamonwan Khanthong & Heewon Jang & Jungyu Park, 2024. "A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management," Energies, MDPI, vol. 17(3), pages 1-27, January.
    5. Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
    6. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    7. Verónica Hidalgo-Sánchez & Uwe Behmel & Josef Hofmann & María Emma Borges, 2023. "Enhancing Biogas Production of Co-Digested Cattle Manure with Grass Silage from a Local Farm in Landshut, Bavaria, through Chemical and Mechanical Pre-Treatment and Its Impact on Biogas Reactor Hydrau," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    8. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2021. "The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge," Energies, MDPI, vol. 14(3), pages 1-16, January.
    9. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    10. Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.
    11. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    12. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Tong, Yen Wah & Sharon, Sigal & Shoseyov, Oded & Liu, Ronghou, 2024. "Fermentation of organic wastes through oleaginous microorganisms for lipid production - Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    13. Nancy Diaz-Elsayed & Jiayi Hua & Nader Rezaei & Qiong Zhang, 2023. "A Decision Framework for Designing Sustainable Wastewater-Based Resource Recovery Schemes," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    14. Pochwatka, Patrycja & Rozakis, Stelios & Kowalczyk-Juśko, Alina & Czekała, Wojciech & Qiao, Wei & Nägele, Hans-Joachim & Janczak, Damian & Mazurkiewicz, Jakub & Mazur, Andrzej & Dach, Jacek, 2023. "The energetic and economic analysis of demand-driven biogas plant investment possibility in dairy farm," Energy, Elsevier, vol. 283(C).
    15. Eljamal, Osama & Eljamal, Ramadan & Falyouna, Omar & Maamoun, Ibrahim & Thompson, Ian P., 2024. "Exceptional contribution of iron nanoparticle and aloe vera biomass additives to biogas production from anaerobic digestion of waste sludge," Energy, Elsevier, vol. 302(C).
    16. Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    17. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Alessia Amato & Konstantina Tsigkou & Alessandro Becci & Francesca Beolchini & Nicolò M. Ippolito & Francesco Ferella, 2023. "Life Cycle Assessment of Biomethane vs. Fossil Methane Production and Supply," Energies, MDPI, vol. 16(12), pages 1-18, June.
    19. Xiaojun Liu & Thomas Lendormi & Jean-Louis Lanoisellé, 2021. "Conventional and Innovative Hygienization of Feedstock for Biogas Production: Resistance of Indicator Bacteria to Thermal Pasteurization, Pulsed Electric Field Treatment, and Anaerobic Digestion," Energies, MDPI, vol. 14(7), pages 1-20, March.
    20. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1397-:d:1610504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.