IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v180y2023ics1364032123001612.html
   My bibliography  Save this article

A review of high-solid anaerobic digestion (HSAD): From transport phenomena to process design

Author

Listed:
  • Li, Wangliang
  • Gupta, Rohit
  • Zhang, Zhikai
  • Cao, Lixia
  • Li, Yanqing
  • Show, Pau Loke
  • Gupta, Vijai Kumar
  • Kumar, Sunil
  • Lin, Kun-Yi Andrew
  • Varjani, Sunita
  • Connelly, Stephanie
  • You, Siming

Abstract

High-solid anaerobic digestion (HSAD) is an attractive organic waste disposal method for bioenergy recovery and climate change mitigation. The development of HSAD is facing several challenges such as low biogas and methane yields, low reaction rates, and ease of process inhibition due to low mass diffusion and mixing limitations of the process. Therefore, the recent progress in HSAD is critically reviewed with a focus on transport phenomena and process modelling. Specifically, the work discusses hydrodynamic phenomena, biokinetic mechanisms, HSAD-specific reactor simulations, state-of-the-art multi-stage reactor designs, industrial ramifications, and key parameters that enable sustained operation of HSAD processes. Further research on novel materials such as bio-additives, adsorbents, and surfactants can augment HSAD process efficiency, while ensuring the stability. Additionally, a generic simulation tool is of urgent need to enable a better coupling between biokinetic phenomena, hydrodynamics, and heat and mass transfer that would warrant HSAD process scale-up.

Suggested Citation

  • Li, Wangliang & Gupta, Rohit & Zhang, Zhikai & Cao, Lixia & Li, Yanqing & Show, Pau Loke & Gupta, Vijai Kumar & Kumar, Sunil & Lin, Kun-Yi Andrew & Varjani, Sunita & Connelly, Stephanie & You, Siming, 2023. "A review of high-solid anaerobic digestion (HSAD): From transport phenomena to process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:rensus:v:180:y:2023:i:c:s1364032123001612
    DOI: 10.1016/j.rser.2023.113305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123001612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jingxin & Loh, Kai-Chee & Li, Wangliang & Lim, Jun Wei & Dai, Yanjun & Tong, Yen Wah, 2017. "Three-stage anaerobic digester for food waste," Applied Energy, Elsevier, vol. 194(C), pages 287-295.
    2. Liao, Xiaocong & Li, Huan, 2015. "Biogas production from low-organic-content sludge using a high-solids anaerobic digester with improved agitation," Applied Energy, Elsevier, vol. 148(C), pages 252-259.
    3. Lindmark, Johan & Leksell, Niklas & Schnürer, Anna & Thorin, Eva, 2012. "Effects of mechanical pre-treatment on the biogas yield from ley crop silage," Applied Energy, Elsevier, vol. 97(C), pages 498-502.
    4. Pei Guo & Jiri Zhou & Rongjiang Ma & Nanyang Yu & Yanping Yuan, 2019. "Biogas Production and Heat Transfer Performance of a Multiphase Flow Digester," Energies, MDPI, vol. 12(10), pages 1-18, May.
    5. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    6. Kothari, Richa & Pandey, A.K. & Kumar, S. & Tyagi, V.V. & Tyagi, S.K., 2014. "Different aspects of dry anaerobic digestion for bio-energy: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 174-195.
    7. Zheng, Lijun & Song, Jiancheng & Li, Chuanyang & Gao, Yunguang & Geng, Pulong & Qu, Binni & Lin, Linyan, 2014. "Preferential policies promote municipal solid waste (MSW) to energy in China: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 135-148.
    8. Elena Rossi & Isabella Pecorini & Renato Iannelli, 2022. "Multilinear Regression Model for Biogas Production Prediction from Dry Anaerobic Digestion of OFMSW," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    9. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Pal, Souvik & Puri, Ishwar K., 2020. "Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction," Energy, Elsevier, vol. 201(C).
    10. Ajayi-Banji, A. & Rahman, S., 2022. "A review of process parameters influence in solid-state anaerobic digestion: Focus on performance stability thresholds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    12. Emebu, Samuel & Pecha, Jiří & Janáčová, Dagmar, 2022. "Review on anaerobic digestion models: Model classification & elaboration of process phenomena," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Alessandra Infante & Maria Vicidomini, 2020. "Modeling of the Anaerobic Digestion of Organic Wastes: Integration of Heat Transfer and Biochemical Aspects," Energies, MDPI, vol. 13(11), pages 1-23, May.
    14. Nkemka, V.N. & Murto, M., 2013. "Two-stage anaerobic dry digestion of blue mussel and reed," Renewable Energy, Elsevier, vol. 50(C), pages 359-364.
    15. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    16. Li, Wangliang & Loh, Kai-Chee & Zhang, Jingxin & Tong, Yen Wah & Dai, Yanjun, 2018. "Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system," Applied Energy, Elsevier, vol. 209(C), pages 400-408.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Xingyao & Wang, Qingping & Zhao, Xixi & Cai, Yafan & Ma, Xuguang & Fu, Jingyi & Wang, Pan & Wang, Yongjing & Liu, Wei & Ren, Lianhai, 2023. "A review of the technologies used for preserving anaerobic digestion inoculum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ombretta Paladino, 2022. "Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    2. Abdullah Nsair & Senem Onen Cinar & Ayah Alassali & Hani Abu Qdais & Kerstin Kuchta, 2020. "Operational Parameters of Biogas Plants: A Review and Evaluation Study," Energies, MDPI, vol. 13(15), pages 1-27, July.
    3. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    4. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    5. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    7. D’ Silva, Tinku Casper & Isha, Adya & Chandra, Ram & Vijay, Virendra Kumar & Subbarao, Paruchuri Mohan V. & Kumar, Ritunesh & Chaudhary, Ved Prakash & Singh, Harjit & Khan, Abid Ali & Tyagi, Vinay Kum, 2021. "Enhancing methane production in anaerobic digestion through hydrogen assisted pathways – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. German Smetana & Ewa Neczaj & Anna Grosser, 2021. "Biomethane Potential of Selected Organic Waste and Sewage Sludge at Different Temperature Regimes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    9. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    10. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    11. Svetlana Zueva & Andrey A. Kovalev & Yury V. Litti & Nicolò M. Ippolito & Valentina Innocenzi & Ida De Michelis, 2021. "Environmental and Economic Aspects of Biomethane Production from Organic Waste in Russia," Energies, MDPI, vol. 14(17), pages 1-8, August.
    12. Chhabra, Vibhuti & Bambery, Keith & Bhattacharya, Sankar & Shastri, Yogendra, 2020. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components," Renewable Energy, Elsevier, vol. 148(C), pages 388-401.
    13. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    14. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2021. "The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge," Energies, MDPI, vol. 14(3), pages 1-16, January.
    15. Capson-Tojo, G. & Moscoviz, R. & Astals, S. & Robles, Á. & Steyer, J.-P., 2020. "Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Zhang, Jingxin & Li, Wangliang & Lee, Jonathan & Loh, Kai-Chee & Dai, Yanjun & Tong, Yen Wah, 2017. "Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment," Energy, Elsevier, vol. 137(C), pages 479-486.
    17. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    18. Zhang, Le & Loh, Kai-Chee & Lim, Jun Wei & Zhang, Jingxin, 2019. "Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 110-126.
    19. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    20. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:180:y:2023:i:c:s1364032123001612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.