IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4658-d1740719.html
   My bibliography  Save this article

Energy Transition in Public Transport: A Cost-Benefit Analysis of Diesel, Electric, and Hydrogen Fuel Cell Buses in Poland’s GZM Metropolis

Author

Listed:
  • Grzegorz Krawczyk

    (Department of Transport, University of Economics in Katowice, 40-287 Katowice, Poland)

  • Grzegorz Karoń

    (Department of Transport of Transport Systems, Traffic Engineering and Logistics, Silesian University of Technology, 40-019 Katowice, Poland)

  • Tomasz Wojciech Szulc

    (Department of Logistics, Silesian University of Technology, 41-800 Zabrze, Poland)

Abstract

Energy transformation is one of the processes shaping contemporary urban transport systems, with public transport being the subject of initiatives designed to enhance its attractiveness and transport utility, including electromobility. This article presents a case study for a metropolitan conurbation—the GZM Metropolis in Poland—considering the economic efficiency of implementing buses with conventional diesel engines, electric buses (battery electric buses), and hydrogen fuel cell-powered buses. The analysis is based on the cost-benefit analysis (CBA) method using the discounted cash flow (DCF) method.

Suggested Citation

  • Grzegorz Krawczyk & Grzegorz Karoń & Tomasz Wojciech Szulc, 2025. "Energy Transition in Public Transport: A Cost-Benefit Analysis of Diesel, Electric, and Hydrogen Fuel Cell Buses in Poland’s GZM Metropolis," Energies, MDPI, vol. 18(17), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4658-:d:1740719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Panta, Utsav & Gairola, Pranav & Nezamuddin, N., 2024. "Modelling benefit-to-cost ratio for initial phase electrification using battery electric bus," Transport Policy, Elsevier, vol. 145(C), pages 137-149.
    3. Sheng, Mingyue Selena & Sreenivasan, Ajith Viswanath & Sharp, Basil & Du, Bo, 2021. "Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania," Energy Policy, Elsevier, vol. 158(C).
    4. Grzegorz Karoń, 2022. "Energy in Smart Urban Transportation with Systemic Use of Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-5, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Vikas & Kaushik, Arun Kumar & Noravesh, Farima & Sindhwani, Rahul & Mathiyazhagan, K., 2025. "Green drives: Understanding how environmental propensity, range and technological anxiety shape electric vehicle adoption intentions," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    2. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    3. Boud Verbrugge & Haaris Rasool & Mohammed Mahedi Hasan & Sajib Chakraborty & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Reliability Assessment of SiC-Based Depot Charging Infrastructure with Smart and Bidirectional (V2X) Charging Strategies for Electric Buses," Energies, MDPI, vol. 16(1), pages 1-15, December.
    4. Paulo J. G. Ribeiro & José F. G. Mendes, 2022. "Towards Zero CO 2 Emissions from Public Transport: The Pathway to the Decarbonization of the Portuguese Urban Bus Fleet," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    5. Rodrigo Antonio Sbardeloto Kraemer & Paula Zenni Lodetti & Alisson Carlos da Silva & Beatriz Batista Cardoso & Ivangelo Vicente & Marcos Aurelio Izumida Martins & Adriano de Paula Simões & Newmar Spad, 2023. "Regulatory Challenges in the Electromobility Sector: An Analysis of Electric Buses in Brazil," Energies, MDPI, vol. 16(8), pages 1-28, April.
    6. José Alberto Fuinhas & Matheus Koengkan & Nuno Carlos Leitão & Chinazaekpere Nwani & Gizem Uzuner & Fatemeh Dehdar & Stefania Relva & Drielli Peyerl, 2021. "Effect of Battery Electric Vehicles on Greenhouse Gas Emissions in 29 European Union Countries," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    7. Yunlong Han & Conghui Li & Linfeng Zheng & Gang Lei & Li Li, 2023. "Remaining Useful Life Prediction of Lithium-Ion Batteries by Using a Denoising Transformer-Based Neural Network," Energies, MDPI, vol. 16(17), pages 1-16, August.
    8. Agustín Álvarez Coomonte & Zacarías Grande Andrade & Rocio Porras Soriano & José Antonio Lozano Galant, 2024. "Review of the Planning and Distribution Methodologies to Locate Hydrogen Infrastructure in the Territory," Energies, MDPI, vol. 17(1), pages 1-25, January.
    9. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).
    10. Wu, Wenqi & Li, Ming & Yang, Yishu & Huang, Beijia & Wang, Shuo & Huang, George Q., 2025. "Optimal deposit-return strategies for the recycling of spent electric automobile battery: Manufacturer, retailer, or consumer," Transport Policy, Elsevier, vol. 164(C), pages 92-103.
    11. Riina Otsason & Ulla Tapaninen, 2023. "Decarbonizing City Water Traffic: Case of Comparing Electric and Diesel-Powered Ferries," Sustainability, MDPI, vol. 15(23), pages 1-13, November.
    12. Andrzej Kubik & Katarzyna Turoń & Piotr Folęga & Feng Chen, 2023. "CO 2 Emissions—Evidence from Internal Combustion and Electric Engine Vehicles from Car-Sharing Systems," Energies, MDPI, vol. 16(5), pages 1-21, February.
    13. Mena ElMenshawy & Ahmed Massoud, 2022. "Medium-Voltage DC-DC Converter Topologies for Electric Bus Fast Charging Stations: State-of-the-Art Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
    14. Soongil Kwon & Yoon-Seong Chang, 2025. "A Study on CO 2 Emission Reduction Using Operating Internal Combustion Engine Vehicles (ICEVs) and Electric Vehicles (EVs) for Rental Vehicles, Focusing on South Korea," Energies, MDPI, vol. 18(11), pages 1-16, June.
    15. Haaris Rasool & Boud Verbrugge & Shahid Jaman & Ekaterina Abramushkina & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Design and Real-Time Implementation of a Control System for SiC Off-Board Chargers of Battery Electric Buses," Energies, MDPI, vol. 15(4), pages 1-19, February.
    16. Grzegorz Karoń & Robert Tomanek, 2023. "Effectiveness of Urban Mobility Decarbonization Instruments," Energies, MDPI, vol. 16(4), pages 1-18, February.
    17. Wen, Le & Sheng, Mingyue Selena & Sharp, Basil & Meng, Tongyu & Du, Bo & Yi, Ming & Suomalainen, Kiti & Gkritza, Konstantina, 2023. "Exploration of the nexus between solar potential and electric vehicle uptake: A case study of Auckland, New Zealand," Energy Policy, Elsevier, vol. 173(C).
    18. Muhammad Irfan & Sara Deilami & Shujuan Huang & Binesh Puthen Veettil, 2023. "Rooftop Solar and Electric Vehicle Integration for Smart, Sustainable Homes: A Comprehensive Review," Energies, MDPI, vol. 16(21), pages 1-29, October.
    19. Grzegorz Karoń, 2022. "Safe and Effective Smart Urban Transportation—Energy Flow in Electric (EV) and Hybrid Electric Vehicles (HEV)," Energies, MDPI, vol. 15(18), pages 1-8, September.
    20. Amra Jahic & Felix Heider & Maik Plenz & Detlef Schulz, 2022. "Flexibility Quantification and the Potential for Its Usage in the Case of Electric Bus Depots with Unidirectional Charging," Energies, MDPI, vol. 15(10), pages 1-18, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4658-:d:1740719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.