Author
Listed:
- Johannes Fichtner
(Faculty of Engineering, Ansbach University of Applied Sciences, 91522 Ansbach, Germany)
- Jan Ninow
(Faculty of Engineering, Ansbach University of Applied Sciences, 91522 Ansbach, Germany)
- Joerg Kapischke
(Faculty of Engineering, Ansbach University of Applied Sciences, 91522 Ansbach, Germany)
Abstract
This study demonstrates that hydrogen enrichment in lean-burn spark-ignition engines can simultaneously improve three key performance metrics, thermal efficiency, combustion stability, and nitrogen oxide emissions, without requiring modifications to the engine hardware or ignition timing. This finding offers a novel control approach to a well-documented trade-off in existing research, where typically only two of these factors are improved at the expense of the third. Unlike previous studies, the present work achieves simultaneous improvement of all three metrics without hardware modification or ignition timing adjustment, relying solely on the optimization of the air–fuel equivalence ratio λ . Experiments were conducted on a six-cylinder engine for combined heat and power application, fueled with hydrogen–natural gas blends containing up to 30% hydrogen by volume. By optimizing only the air–fuel equivalence ratio, it was possible to extend the lean-burn limit from λ ≈ 1.6 to λ > 1.9 , reduce nitrogen oxide emissions by up to 70%, enhance thermal efficiency by up to 2.2 percentage points, and significantly improve combustion stability, reducing cycle-by-cycle variationsfrom 2.1% to 0.7%. A defined λ window was identified in which all three key performance indicators simultaneously meet or exceed the natural gas baseline. Within this window, balanced improvements in nitrogen oxide emissions, efficiency, and stability are achievable, although the individual maxima occur at different operating points. Cylinder pressure analysis confirmed that combustion dynamics can be realigned with original equipment manufacturer characteristics via mixture leaning alone, mitigating hydrogen-induced pressure increases to just 11% above the natural gas baseline. These results position hydrogen as a performance booster for natural gas engines in stationary applications, enabling cleaner, more efficient, and smoother operation without added system complexity. The key result is the identification of a λ window that enables simultaneous optimization of nitrogen oxide emissions, efficiency, and combustion stability using only mixture control.
Suggested Citation
Johannes Fichtner & Jan Ninow & Joerg Kapischke, 2025.
"Simultaneous Reductions in NO x Emissions, Combustion Instability, and Efficiency Loss in a Lean-Burn CHP Engine via Hydrogen-Enriched Natural Gas,"
Energies, MDPI, vol. 18(16), pages 1-15, August.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:16:p:4339-:d:1724593
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4339-:d:1724593. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.