IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3951-d1708841.html
   My bibliography  Save this article

Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition

Author

Listed:
  • Yiqiao Li

    (Zhan Tianyou College, Dalian Jiaotong University, Dalian 116028, China)

  • Hao Huang

    (Zhan Tianyou College, Dalian Jiaotong University, Dalian 116028, China)

  • Shengqiang Shen

    (School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yali Guo

    (School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yong Yang

    (School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Siyuan Liu

    (Zhan Tianyou College, Dalian Jiaotong University, Dalian 116028, China)

Abstract

Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit.

Suggested Citation

  • Yiqiao Li & Hao Huang & Shengqiang Shen & Yali Guo & Yong Yang & Siyuan Liu, 2025. "Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition," Energies, MDPI, vol. 18(15), pages 1-37, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3951-:d:1708841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3951/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3951/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wee, Jung-Ho, 2007. "Applications of proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1720-1738, October.
    2. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    3. Kuo, Jenn-Kun & Hsieh, Chun-Yao, 2021. "Numerical investigation into effects of ejector geometry and operating conditions on hydrogen recirculation ratio in 80 kW PEM fuel cell system," Energy, Elsevier, vol. 233(C).
    4. Zegenhagen, M.T. & Ziegler, F., 2015. "Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines," Applied Energy, Elsevier, vol. 160(C), pages 221-230.
    5. Ding, Hongbing & Zhang, Panpan & Dong, Yuanyuan & Yang, Yan, 2024. "Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation," Renewable Energy, Elsevier, vol. 237(PC).
    6. Kumar, Virendra & Singhal, Gaurav & Subbarao, P.M.V., 2018. "Realization of novel constant rate of kinetic energy change (CRKEC) supersonic ejector," Energy, Elsevier, vol. 164(C), pages 694-706.
    7. Song, Yajie & Wang, Xinli & Wang, Lei & Pan, Fengwen & Chen, Wenmiao & Xi, Fuqiang, 2021. "A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system," Applied Energy, Elsevier, vol. 300(C).
    8. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    9. Han, Yu & Wang, Xiaodong & Sun, Hao & Zhang, Guangli & Guo, Lixin & Tu, Jiyuan, 2019. "CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance," Energy, Elsevier, vol. 167(C), pages 469-483.
    10. Jenssen, Dirk & Berger, Oliver & Krewer, Ulrike, 2017. "Improved PEM fuel cell system operation with cascaded stack and ejector-based recirculation," Applied Energy, Elsevier, vol. 195(C), pages 324-333.
    11. Wen, Chuang & Rogie, Brice & Kærn, Martin Ryhl & Rothuizen, Erasmus, 2020. "A first study of the potential of integrating an ejector in hydrogen fuelling stations for fuelling high pressure hydrogen vehicles," Applied Energy, Elsevier, vol. 260(C).
    12. Muhammad Syaukani & Szymon Lech & Sindu Daniarta & Piotr Kolasiński, 2025. "A Systematic Review of Two-Phase Expansion Losses: Challenges, Optimization Opportunities, and Future Research Directions," Energies, MDPI, vol. 18(13), pages 1-35, July.
    13. Marcin Jankowski & Anna Pałac & Krzysztof Sornek & Wojciech Goryl & Maciej Żołądek & Maksymilian Homa & Mariusz Filipowicz, 2024. "Status and Development Perspectives of the Compressed Air Energy Storage (CAES) Technologies—A Literature Review," Energies, MDPI, vol. 17(9), pages 1-46, April.
    14. Li, Yafei & Deng, Jianqiang & Ma, Li, 2019. "Experimental study on the primary flow expansion characteristics in transcritical CO2 two-phase ejectors with different primary nozzle diverging angles," Energy, Elsevier, vol. 186(C).
    15. Sadeghi, Mohsen & Yari, Mortaza & Mahmoudi, S.M.S. & Jafari, Moharram, 2017. "Thermodynamic analysis and optimization of a novel combined power and ejector refrigeration cycle – Desalination system," Applied Energy, Elsevier, vol. 208(C), pages 239-251.
    16. Khafaji, H.K. & Shahsavand, A. & Shooshtari, S. H. Rajaee, 2024. "Simultaneous optimization of crude oil refinery vacuum distillation column and corresponding ejector system," Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    2. Liu, Rongkang & Zhu, Xinning & Wang, Xi & Xiang, Ruiheng & Su, Liang & Chu, Xuyang & Zhou, Wei, 2025. "Design and performance investigation on adjustable ejector with petal spindle valve for high-power fuel cell adapted heavy-duty truck powertrain," Applied Energy, Elsevier, vol. 390(C).
    3. Ding, Gaoya & Cao, Xuewen & Chen, Junwen & Zhang, Yue & Bian, Jiang, 2024. "Impact of the expansion ratio on the properties of hydrogen recirculation ejectors," Applied Energy, Elsevier, vol. 374(C).
    4. Jianmei Feng & Jiquan Han & Zihui Pang & Xueyuan Peng, 2023. "Designing Hydrogen Recirculation Ejectors for Proton Exchange Membrane Fuel Cell Systems," Energies, MDPI, vol. 16(3), pages 1-10, January.
    5. Tang, Yongzhi & Yuan, Jiali & Liu, Zhongliang & Feng, Qing & Gong, Xiaolong & Lu, Lin & Chua, Kian Jon, 2022. "Study on evolution laws of two-phase choking flow and entrainment performance of steam ejector oriented towards MED-TVC desalination system," Energy, Elsevier, vol. 242(C).
    6. Song, Yajie & Wang, Xinli & Wang, Lei & Pan, Fengwen & Chen, Wenmiao & Xi, Fuqiang, 2021. "A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system," Applied Energy, Elsevier, vol. 300(C).
    7. Ding, Hongbing & Zhang, Panpan & Dong, Yuanyuan & Yang, Yan, 2024. "Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation," Renewable Energy, Elsevier, vol. 237(PC).
    8. Jie Wang & Hongfang Gu, 2021. "A Study of Moist Air Condensation Characteristics in a Transonic Flow System," Energies, MDPI, vol. 14(13), pages 1-12, July.
    9. Yu, Meihong & Wang, Chen & Yu, Tang & Ma, Le & Liu, Xiuting & Gong, Houjun & Wang, Lei & Liu, Minyun & Huang, Yanping & Wang, Xinli, 2025. "Multi-stage ejector based low-pressure leaking gas recirculation system for supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 316(C).
    10. Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
    11. Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
    12. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    13. Han, Qingyang & Feng, Haodong & Zhang, Hailun & Wang, Lei & Xue, Haoyuan & Sun, Wenxu & Jia, Lei, 2024. "Model optimization and mechanism analysis of two-stage ejector considering nonequilibrium condensation," Energy, Elsevier, vol. 310(C).
    14. Mouhammad El Hassan, 2022. "System COP of Ejector-Based Ground-Source Heat Pumps," Energies, MDPI, vol. 15(22), pages 1-14, November.
    15. Hafiz Ali Muhammad & Hafiz Muhammad Abdullah & Zabdur Rehman & Beomjoon Lee & Young-Jin Baik & Jongjae Cho & Muhammad Imran & Manzar Masud & Mohsin Saleem & Muhammad Shoaib Butt, 2020. "Numerical Modeling of Ejector and Development of Improved Methods for the Design of Ejector-Assisted Refrigeration System," Energies, MDPI, vol. 13(21), pages 1-19, November.
    16. Liu, Yang & Cao, Xuewen & Guo, Dan & Cao, Hengguang & Bian, Jiang, 2023. "Influence of shock wave/boundary layer interaction on condensation flow and energy recovery in supersonic nozzle," Energy, Elsevier, vol. 263(PA).
    17. Wen, Chuang & Gong, Liang & Ding, Hongbing & Yang, Yan, 2020. "Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system," Applied Energy, Elsevier, vol. 279(C).
    18. Song, Yajie & Wang, Chen & Wang, Lei & Wang, Xinli & Jia, Lei, 2025. "Design criterion of critical mode ejector for PEMFC hydrogen supply and recycle system," Applied Energy, Elsevier, vol. 377(PB).
    19. Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Yang, Yan & Wen, Chuang, 2023. "Energy efficiency assessment of hydrogen recirculation ejectors for proton exchange membrane fuel cell (PEMFC) system," Applied Energy, Elsevier, vol. 346(C).
    20. Yang, Yan & Karvounis, Nikolas & Walther, Jens Honore & Ding, Hongbing & Wen, Chuang, 2021. "Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations," Energy, Elsevier, vol. 237(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3951-:d:1708841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.