IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3504-d1693520.html
   My bibliography  Save this article

A Systematic Review of Two-Phase Expansion Losses: Challenges, Optimization Opportunities, and Future Research Directions

Author

Listed:
  • Muhammad Syaukani

    (Department of Mechanical Engineering, Institut Teknologi Sumatera, Bandur Lampung 35365, Indonesia
    Department of Thermodynamics and Renewable Sources, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Szymon Lech

    (Department of Thermodynamics and Renewable Sources, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Sindu Daniarta

    (Department of Thermodynamics and Renewable Sources, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Piotr Kolasiński

    (Department of Thermodynamics and Renewable Sources, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

Abstract

Two-phase expansion processes have emerged as a promising technology for enhancing energy efficiency in power generation, refrigeration, waste heat recovery systems (for example, partially evaporated organic Rankine cycle, organic flash cycle, and trilateral flash cycle), oil and gas, and other applications. However, despite their potential, widespread adoption is hindered by inherent challenges, particularly energy losses that reduce operational efficiency. This review systematically evaluates the current state of two-phase expansion technologies, focusing on the root causes, impacts, and mitigation strategies for expansion losses. This work used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Using the PRISMA framework, 52 relevant publications were identified from Scopus and Web of Science to conduct the systematic review. A preliminary co-occurrence analysis of keywords was also conducted using VOSviewer version 1.6.20. Three clusters were observed in this co-occurrence analysis. However, the results may not be significant. Therefore, the extended work was done through a comprehensive analysis of experimental and simulation studies from the literature. This study identifies critical loss mechanisms in key components of two-phase expanders, such as the nozzle, diffuser, rotor, working chamber, and vaneless space. Also, losses arising from wetness, such as droplet formation, interfacial friction, and non-equilibrium phase transitions, are examined. These phenomena degrade performance by disrupting flow stability, increasing entropy generation, and causing mechanical erosion. Several losses in the turbine and volumetric expanders operating in two-phase conditions are reported. Ejectors, throttling valves, and flashing flow systems that exhibit similar challenges of losses are also discussed. This review discusses the mitigation and the strategy to minimize the two-phase expansion losses. The geometry of the inlet of the two-phase expanders plays an important role, which also needs improvement to minimize losses. The review highlights recent advancements in addressing these challenges and shows optimization opportunities for further research.

Suggested Citation

  • Muhammad Syaukani & Szymon Lech & Sindu Daniarta & Piotr Kolasiński, 2025. "A Systematic Review of Two-Phase Expansion Losses: Challenges, Optimization Opportunities, and Future Research Directions," Energies, MDPI, vol. 18(13), pages 1-35, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3504-:d:1693520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    2. Zhang, Guojie & Yang, Yifan & Zhang, Xinzhe & Zhang, Zebin & Chen, Jiaheng & Jin, Zunlong & Dykas, Sławomir, 2024. "Nanoparticles-induced heterogeneous condensation and geometry optimizations to enhance liquefaction efficiency and mitigate exergy loss in a novel hydrogen liquefaction two-phase expander," Energy, Elsevier, vol. 313(C).
    3. Wen, Chuang & Gong, Liang & Ding, Hongbing & Yang, Yan, 2020. "Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system," Applied Energy, Elsevier, vol. 279(C).
    4. Fischer, Johann, 2011. "Comparison of trilateral cycles and organic Rankine cycles," Energy, Elsevier, vol. 36(10), pages 6208-6219.
    5. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    6. Badr, O. & O'Callaghan, P. W. & Hussein, M. & Probert, S. D., 1984. "Multi-vane expanders as prime movers for low-grade energy organic Rankine-cycle engines," Applied Energy, Elsevier, vol. 16(2), pages 129-146.
    7. Liu, Ye & Yu, Jianlin, 2018. "Performance analysis of an advanced ejector-expansion autocascade refrigeration cycle," Energy, Elsevier, vol. 165(PB), pages 859-867.
    8. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Zhiyu & Zhang, Cancan & Wu, Yuting & Lei, Biao & Yan, Dong & Zhi, Ruiping & Shen, Lili, 2020. "Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications," Energy, Elsevier, vol. 199(C).
    2. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2017. "Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK," Applied Energy, Elsevier, vol. 186(P3), pages 291-303.
    3. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    4. Naseri, Ali & Norris, Stuart & Subiantoro, Alison, 2020. "Experimental investigation of a prototype semi-dry revolving vane expander: Design challenges and performance criteria," Energy, Elsevier, vol. 205(C).
    5. Eyerer, Sebastian & Dawo, Fabian & Rieger, Florian & Schuster, Andreas & Aumann, Richard & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental and numerical investigation of direct liquid injection into an ORC twin-screw expander," Energy, Elsevier, vol. 178(C), pages 867-878.
    6. Francesconi, M. & Caposciutti, G. & Antonelli, M., 2018. "An experimental and numerical analysis of the performances of a Wankel steam expander," Energy, Elsevier, vol. 164(C), pages 615-626.
    7. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    8. Sindu Daniarta & Piotr Kolasiński & Barbara Rogosz, 2022. "Waste Heat Recovery in Automotive Paint Shop via Organic Rankine Cycle and Thermal Energy Storage System—Selected Thermodynamic Issues," Energies, MDPI, vol. 15(6), pages 1-18, March.
    9. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    10. Zhao, Zhaorui & Zhang, Jingyu & Wang, Gaofeng & Yuan, Hao & Tian, Yafen, 2024. "Research and clearance analysis on of steam twin-screw expander employed in indutrial waste heat recovery," Energy, Elsevier, vol. 312(C).
    11. Xiaoli Yu & Zhi Li & Yiji Lu & Rui Huang & Anthony Paul Roskilly, 2018. "Investigation of an Innovative Cascade Cycle Combining a Trilateral Cycle and an Organic Rankine Cycle (TLC-ORC) for Industry or Transport Application," Energies, MDPI, vol. 11(11), pages 1-22, November.
    12. Francesconi, Marco & Antonelli, Marco, 2017. "A numerical model for the prediction of the fluid dynamic and mechanical losses of a Wankel-type expansion device," Applied Energy, Elsevier, vol. 205(C), pages 225-235.
    13. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2024. "Model-based optimisation of solar-assisted ORC-based power unit for domestic micro-cogeneration," Energy, Elsevier, vol. 308(C).
    14. Murthy, Anarghya Ananda & Krishan, Gopal & Shenoy, Praveen & Patil, Ishwaragouda S, 2024. "Theoretical, CFD modelling and experimental investigation of a four-intersecting-vane rotary expander," Applied Energy, Elsevier, vol. 353(PB).
    15. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    16. Li, Guoqiang & Lei, Biao & Wu, Yuting & Zhi, Ruiping & Zhao, Yingkun & Guo, Zhiyu & Liu, Guangyu & Ma, Chongfang, 2018. "Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype," Energy, Elsevier, vol. 147(C), pages 279-285.
    17. Kachawong, Thongchai & Koonsrisuk, Atit, 2025. "From vapor to liquid: Unlocking the potential of Tesla turbines in ORC power plants with variable steam qualities," Energy, Elsevier, vol. 315(C).
    18. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    19. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    20. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3504-:d:1693520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.