IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225001628.html
   My bibliography  Save this article

Multi-stage ejector based low-pressure leaking gas recirculation system for supercritical CO2 Brayton cycle

Author

Listed:
  • Yu, Meihong
  • Wang, Chen
  • Yu, Tang
  • Ma, Le
  • Liu, Xiuting
  • Gong, Houjun
  • Wang, Lei
  • Liu, Minyun
  • Huang, Yanping
  • Wang, Xinli

Abstract

The supercritical carbon dioxide Brayton cycle (SCBC) is an appealing power system for its high compactness and efficiency. The ultra-high rotational speeds of mechanical components and the large pressure difference in turbomachinery lead to the supercritical CO2 (S-CO2) leakage affecting overall efficiency and stability. This study presents a four-stage ejector based leakage gas recovery system to reuse the leaking S-CO2 and enhance the system performance. This work proposes a design methodology for the four-stage ejector and then investigates its operating characteristics under different working conditions through a verified numerical simulation model. The findings indicate that the working conditions of the multi-stage ejector affect the number of ejectors in critical mode and then its entrainment performance. Increasing primary flow pressure improves the pressure lift performance of the multi-stage ejector, while variations in secondary fluid pressure have minimal impact. Besides, the final-stage ejector design is critical for maximizing pressure lift capacity of multi-stage ejectors, while the first-stage design highly influences their entrainment performance. Finally, compared to the compressor-based SCBC and the single-ejector-based SCBC, the proposed system can recycle 5.0 g/s of leaking S-CO2 and achieve a pressure lift of 7.5 MPa with a more compact geometric structure, thereby facilitating the miniaturization of SCBCs.

Suggested Citation

  • Yu, Meihong & Wang, Chen & Yu, Tang & Ma, Le & Liu, Xiuting & Gong, Houjun & Wang, Lei & Liu, Minyun & Huang, Yanping & Wang, Xinli, 2025. "Multi-stage ejector based low-pressure leaking gas recirculation system for supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001628
    DOI: 10.1016/j.energy.2025.134520
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225001628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Quanbin & Xu, Jiayuan & Hou, Min & Chong, Daotong & Wang, Jinshi & Chen, Weixiong, 2024. "Dynamic characteristic analysis of SCO2 Brayton cycle under different turbine back pressure modes," Energy, Elsevier, vol. 293(C).
    2. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    3. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    4. Wang, Tianze & Xu, Jinliang & Wang, Zhaofu & Zheng, Haonan & Qi, Jianhui & Liu, Guanglin, 2023. "Irreversible losses, characteristic sizes and efficiencies of sCO2 axial turbines dependent on power capacities," Energy, Elsevier, vol. 275(C).
    5. Li, Gen & Du, Guanghan & Liu, Guixiu & Yan, Junjie, 2024. "Study on the dynamic characteristics, control strategies and load variation rates of the concentrated solar power plant," Applied Energy, Elsevier, vol. 357(C).
    6. Liu, Guangdi & Pu, Liang & Zhao, Hongxia & Chen, Zhuang & Li, Guangpeng, 2024. "Multi-objective optimization of CO2 ejector by combined significant variables recognition, ANN surrogate model and multi-objective genetic algorithm," Energy, Elsevier, vol. 295(C).
    7. Song, Yajie & Wang, Xinli & Wang, Lei & Pan, Fengwen & Chen, Wenmiao & Xi, Fuqiang, 2021. "A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system," Applied Energy, Elsevier, vol. 300(C).
    8. Mohammadi, Ali, 2019. "An investigation of geometrical factors of multi-stage steam ejectors for air suction," Energy, Elsevier, vol. 186(C).
    9. Han, Qingyang & Feng, Haodong & Zhang, Hailun & Wang, Lei & Xue, Haoyuan & Sun, Wenxu & Jia, Lei, 2024. "Model optimization and mechanism analysis of two-stage ejector considering nonequilibrium condensation," Energy, Elsevier, vol. 310(C).
    10. López-Zavala, R. & Velázquez-Limón, N. & Ojeda-Benítez, S. & Nakasima-López, M. & Lara, F. & Aguilar-Jiménez, J.A. & Santillán-Soto, N. & Islas, S., 2023. "Novel desalination system that uses product water to generate cooling through a barometric ejector-condenser," Energy, Elsevier, vol. 276(C).
    11. Chen, Jinwei & Hu, Zhenchao & Lu, Jinzhi & Zhang, Huisheng & Weng, Shilie, 2022. "A novel control strategy with an anode variable geometry ejector for a SOFC-GT hybrid system," Energy, Elsevier, vol. 261(PA).
    12. Liu, Fang & Groll, Eckhard A. & Li, Daqing, 2012. "Investigation on performance of variable geometry ejectors for CO2 refrigeration cycles," Energy, Elsevier, vol. 45(1), pages 829-839.
    13. Zhang, Shaozhi & Luo, Jielin & Wang, Qin & Chen, Guangming, 2018. "Step utilization of energy with ejector in a heat driven freeze drying system," Energy, Elsevier, vol. 164(C), pages 734-744.
    14. Li, Yafei & Deng, Jianqiang & Ma, Li, 2019. "Experimental study on the primary flow expansion characteristics in transcritical CO2 two-phase ejectors with different primary nozzle diverging angles," Energy, Elsevier, vol. 186(C).
    15. Palacz, Michal & Haida, Michal & Smolka, Jacek & Plis, Marcin & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "A gas ejector for CO2 supercritical cycles," Energy, Elsevier, vol. 163(C), pages 1207-1216.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    2. Fatong Jia & Dazhang Yang & Jing Xie, 2021. "Numerical Investigation on the Performance of Two-Throat Nozzle Ejectors with Different Mixing Chamber Structural Parameters," Energies, MDPI, vol. 14(21), pages 1-16, October.
    3. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    4. Lixing Zheng & Hongwei Hu & Weibo Wang & Yiyan Zhang & Lingmei Wang, 2022. "Study on Flow Distribution and Structure Optimization in a Mix Chamber and Diffuser of a CO 2 Two-Phase Ejector," Mathematics, MDPI, vol. 10(5), pages 1-16, February.
    5. Khafaji, H.K. & Shahsavand, A. & Shooshtari, S. H. Rajaee, 2024. "Simultaneous optimization of crude oil refinery vacuum distillation column and corresponding ejector system," Energy, Elsevier, vol. 294(C).
    6. Wang, Tianze & Xu, Jinliang & Liu, Guanglin, 2025. "Maximum thermal efficiencies of supercritical CO2 power cycle at various power capacities," Energy, Elsevier, vol. 314(C).
    7. Li, Yafei & Deng, Jianqiang, 2022. "Numerical investigation on the performance of transcritical CO2 two-phase ejector with a novel non-equilibrium CFD model," Energy, Elsevier, vol. 238(PC).
    8. Shan, Yong & Zhang, Jing-zhou & Ren, Xiao-wen, 2018. "Numerical modeling on pumping performance of piccolo-tube multi-nozzles supersonic ejector in an oil radiator passage," Energy, Elsevier, vol. 158(C), pages 216-227.
    9. Haida, Michal & Smolka, Jacek & Hafner, Armin & Ostrowski, Ziemowit & Palacz, Michał & Madsen, Kenneth B. & Försterling, Sven & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "Performance mapping of the R744 ejectors for refrigeration and air conditioning supermarket application: A hybrid reduced-order model," Energy, Elsevier, vol. 153(C), pages 933-948.
    10. Han, Qingyang & Feng, Haodong & Zhang, Hailun & Wang, Lei & Xue, Haoyuan & Sun, Wenxu & Jia, Lei, 2024. "Model optimization and mechanism analysis of two-stage ejector considering nonequilibrium condensation," Energy, Elsevier, vol. 310(C).
    11. Chen, Guangming & Ierin, Volodymyr & Volovyk, Oleksii & Shestopalov, Kostyantyn, 2019. "An improved cascade mechanical compression–ejector cooling cycle," Energy, Elsevier, vol. 170(C), pages 459-470.
    12. Lou, Juwei & Wang, Jiangfeng & Chen, Liangqi & Wang, Yikai & Zhao, Pan & Wang, Shunsen, 2023. "Multi-objective optimization and off-design performance evaluation of coaxial turbomachines for a novel energy storage-based recuperated S–CO2 Brayton cycle driven by nuclear energy," Energy, Elsevier, vol. 275(C).
    13. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    14. Ramesh, A.S. & Sekhar, S. Joseph, 2018. "Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector," Energy, Elsevier, vol. 164(C), pages 1097-1113.
    15. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    16. Feng, Jiaqi & Wang, Junpeng & Chen, Zhentao & Li, Yuzhe & Luo, Zhengyuan & Bai, Bofeng, 2024. "Performance advantages of transcritical CO2 cycle in the marine environment," Energy, Elsevier, vol. 305(C).
    17. Li, Fenglei & Wu, Changzhi & Wang, Xiangyu & Tian, Qi & Teo, Kok Lay, 2016. "Sparsity-enhanced optimization for ejector performance prediction," Energy, Elsevier, vol. 113(C), pages 25-34.
    18. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    19. Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
    20. Sierra-Pallares, José & García del Valle, Javier & Paniagua, Jorge Muñoz & García, Javier & Méndez-Bueno, César & Castro, Francisco, 2018. "Shape optimization of a long-tapered R134a ejector mixing chamber," Energy, Elsevier, vol. 165(PA), pages 422-438.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.