IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3894-d1706943.html
   My bibliography  Save this article

Degradation-Aware Bi-Level Optimization of Second-Life Battery Energy Storage System Considering Demand Charge Reduction

Author

Listed:
  • Ali Hassan

    (Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI 48128, USA)

  • Guilherme Vieira Hollweg

    (Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI 48128, USA)

  • Wencong Su

    (Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI 48128, USA)

  • Xuan Zhou

    (Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI 48128, USA)

  • Mengqi Wang

    (Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI 48128, USA)

Abstract

Many electric vehicle (EV) batteries will retire in the next 5–10 years around the globe. These batteries are retired when no longer suitable for energy-intensive EV operations despite having 70–80% capacity left. The second-life use of these battery packs has the potential to address the increasing demand for battery energy storage systems (BESSs) for the electric grid, which will also create a robust circular economy for EV batteries. This article proposes a two-layered energy management algorithm (monthly layer and daily layer) for demand charge reduction for an industrial consumer using photovoltaic (PV) panels and BESSs made of retired EV batteries. In the proposed algorithm, the monthly layer (ML) calculates the optimal dispatch for the whole month and feeds the output to the daily layer (DL), which optimizes the BESS dispatch, BESSs’ degradation, and energy imported/exported from/to the grid. The effectiveness of the proposed algorithm is tested as a case study of an industrial load using a real-world demand charge and Real-Time Pricing (RTP) tariff. Compared with energy management with no consideration of degradation or demand charge reduction, this algorithm results in 71% less degradation of BESS and 57.3% demand charge reduction for the industrial consumer.

Suggested Citation

  • Ali Hassan & Guilherme Vieira Hollweg & Wencong Su & Xuan Zhou & Mengqi Wang, 2025. "Degradation-Aware Bi-Level Optimization of Second-Life Battery Energy Storage System Considering Demand Charge Reduction," Energies, MDPI, vol. 18(15), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3894-:d:1706943
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rehman, Waqas ur & Bo, Rui & Mehdipourpicha, Hossein & Kimball, Jonathan W., 2022. "Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation," Applied Energy, Elsevier, vol. 313(C).
    2. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    3. Shubo Hu & Hui Sun & Feixiang Peng & Wei Zhou & Wenping Cao & Anlong Su & Xiaodong Chen & Mingze Sun, 2018. "Optimization Strategy for Economic Power Dispatch Utilizing Retired EV Batteries as Flexible Loads," Energies, MDPI, vol. 11(7), pages 1-21, June.
    4. Cheng, Ming & Zhang, Xuan & Ran, Aihua & Wei, Guodan & Sun, Hongbin, 2023. "Optimal dispatch approach for second-life batteries considering degradation with online SoH estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ishika Chhillar & Sukhbir Sandhu & Subhadarsini Parida & Peter Majewski, 2025. "Certification for Solar Panel Reuse: A Systematic Review of Cross-Sector Practices and Gaps," Sustainability, MDPI, vol. 17(13), pages 1-23, June.
    2. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
    3. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    4. Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2025. "Stochastic optimization of integrated electric vehicle charging stations under photovoltaic uncertainty and battery power constraints," Energy, Elsevier, vol. 314(C).
    5. Irina Picioroaga & Madalina Luca & Andrei Tudose & Dorian Sidea & Mircea Eremia & Constantin Bulac, 2023. "Resilience-Driven Optimal Sizing of Energy Storage Systems in Remote Microgrids," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    6. Xing, W.W. & Zhang, Z. & Shah, A.A., 2025. "Enhanced Gaussian process dynamical modeling for battery health status forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    7. Li, Yiqun & Pu, Ziyuan & Liu, Pei & Qian, Tao & Hu, Qinran & Zhang, Junyi & Wang, Yinhai, 2025. "Efficient predictive control strategy for mitigating the overlap of EV charging demand and residential load based on distributed renewable energy," Renewable Energy, Elsevier, vol. 240(C).
    8. Patrycja Walichnowska & Weronika Kruszelnicka & Andrzej Tomporowski & Adam Mroziński, 2025. "The Impact of Energy Storage on the Efficiency of Photovoltaic Systems and Determining the Carbon Footprint of Households with Different Electricity Sources," Sustainability, MDPI, vol. 17(6), pages 1-16, March.
    9. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).
    10. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Saad M. Abdullah & Makbul A. Ramli, 2023. "Sizing of Hybrid PV/Battery/Wind/Diesel Microgrid System Using an Improved Decomposition Multi-Objective Evolutionary Algorithm Considering Uncertainties and Battery Degradation," Sustainability, MDPI, vol. 15(14), pages 1-38, July.
    11. Xin Sui & Shengyang Lu & Hai He & Yuting Zhao & Shubo Hu & Ziqian Liu & Hong Gu & Hui Sun, 2020. "Wind-Thermal-Nuclear-Storage Combined Time Division Power Dispatch Based on Numerical Characteristics of Net Load," Energies, MDPI, vol. 13(2), pages 1-24, January.
    12. Sun, Jing & Fan, Chaoqun & Yan, Huiyi, 2024. "SOH estimation of lithium-ion batteries based on multi-feature deep fusion and XGBoost," Energy, Elsevier, vol. 306(C).
    13. Anna Manowska & Andrzej Nowrot, 2022. "Solar Farms as the Only Power Source for the Entire Country," Energies, MDPI, vol. 15(14), pages 1-15, July.
    14. Md. Tanjil Sarker & Mohammed Hussein Saleh Mohammed Haram & Siow Jat Shern & Gobbi Ramasamy & Fahmid Al Farid, 2024. "Second-Life Electric Vehicle Batteries for Home Photovoltaic Systems: Transforming Energy Storage and Sustainability," Energies, MDPI, vol. 17(10), pages 1-23, May.
    15. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Zhou, Yuekuan & Mansouri, Seyed Amir & Jurado, Francisco, 2024. "Best-case-aware planning of photovoltaic-battery systems for multi-mode charging stations," Renewable Energy, Elsevier, vol. 225(C).
    16. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.
    17. Mattia Gianvincenzi & Marco Marconi & Enrico Maria Mosconi & Claudio Favi & Francesco Tola, 2024. "Systematic Review of Battery Life Cycle Management: A Framework for European Regulation Compliance," Sustainability, MDPI, vol. 16(22), pages 1-31, November.
    18. Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
    19. Hui Sun & Peng Yuan & Zhuoning Sun & Shubo Hu & Feixiang Peng & Wei Zhou, 2018. "Distribution Network Congestion Dispatch Considering Time-Spatial Diversion of Electric Vehicles Charging," Energies, MDPI, vol. 11(10), pages 1-17, October.
    20. Suyang Zhou & Yuxuan Zhuang & Wei Gu & Zhi Wu, 2018. "Operation and Economic Assessment of Hybrid Refueling Station Considering Traffic Flow Information," Energies, MDPI, vol. 11(8), pages 1-20, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3894-:d:1706943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.