IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1657-d154442.html
   My bibliography  Save this article

Optimization Strategy for Economic Power Dispatch Utilizing Retired EV Batteries as Flexible Loads

Author

Listed:
  • Shubo Hu

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Hui Sun

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Feixiang Peng

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Wei Zhou

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Wenping Cao

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
    School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK)

  • Anlong Su

    (State Grid Liaoning Electric Power Co., Ltd., Shenyang 116001, China)

  • Xiaodong Chen

    (State Grid Dalian Electric Power Co., Ltd., Dalian 116001, China)

  • Mingze Sun

    (State Grid Liaoning Electric Power Co., Ltd., Shenyang 116001, China)

Abstract

With the increasing penetration of new and renewable energy, incorporating variable adjustable power elements on the demand side is of particular interest. The utilization of batteries as flexible loads is a hot research topic. Lithium-ion batteries are key components in electric vehicles (EVs) in terms of capital cost, mass and size. They are retired after around 5 years of service, but still retain up to 80% of their nominal capacity. Disposal of waste batteries will become a significant issue for the automotive industry in the years to come. This work proposes the use of the second life of these batteries as flexible loads to participate in the economic power dispatch. The characteristics of second life batteries (SLBs) are varied and diverse, requiring a new optimization strategy for power dispatch at the system level. In this work, SLBs are characterized and their operating curves are obtained analytically for developing an economic power dispatch model involving wind farms and second life batteries. In addition, a dispatch strategy is developed to reduce the dispatch complex brought by the disperse spatial and time distribution of EVs and decrease the system operating cost by introducing incentive and penalty costs in regulating the EV performance. In theory, SLBs are utilized to reduce the peak-valley difference of power loads and to stabilize the power system. Test results based on a ten-unit power system have verified the effectiveness of the proposed dispatch model and the economic benefit of utilizing SLBs as flexible loads in power systems. This work may provide a viable solution to the disposal of waste batteries from EVs and to the stable operation of fluctuating power systems incorporating stochastic renewable energy.

Suggested Citation

  • Shubo Hu & Hui Sun & Feixiang Peng & Wei Zhou & Wenping Cao & Anlong Su & Xiaodong Chen & Mingze Sun, 2018. "Optimization Strategy for Economic Power Dispatch Utilizing Retired EV Batteries as Flexible Loads," Energies, MDPI, vol. 11(7), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1657-:d:154442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rebours, Yann & Kirschen, Daniel & Trotignon, Marc, 2007. "Fundamental Design Issues in Markets for Ancillary Services," The Electricity Journal, Elsevier, vol. 20(6), pages 26-34, July.
    2. Mingchao Xia & Qingying Lai & Yajiao Zhong & Canbing Li & Hsiao-Dong Chiang, 2016. "Aggregator-Based Interactive Charging Management System for Electric Vehicle Charging," Energies, MDPI, vol. 9(3), pages 1-14, March.
    3. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Sun & Peng Yuan & Zhuoning Sun & Shubo Hu & Feixiang Peng & Wei Zhou, 2018. "Distribution Network Congestion Dispatch Considering Time-Spatial Diversion of Electric Vehicles Charging," Energies, MDPI, vol. 11(10), pages 1-17, October.
    2. Hu, Shu-bo & Gao, Zheng-nan & He, Hai & Cao, Wen-ping & Zhao, Yu-ting & Zhou, Wei & Gu, Hong & Sun, Hui, 2020. "Adaptive time division power dispatch based on numerical characteristics of net loads," Energy, Elsevier, vol. 205(C).
    3. Shubo Hu & Feixiang Peng & Zhengnan Gao & Changqiang Ding & Hui Sun & Wei Zhou, 2019. "Sample Entropy Based Net Load Tracing Dispatch of New Energy Power System," Energies, MDPI, vol. 12(1), pages 1-23, January.
    4. Suyang Zhou & Yuxuan Zhuang & Wei Gu & Zhi Wu, 2018. "Operation and Economic Assessment of Hybrid Refueling Station Considering Traffic Flow Information," Energies, MDPI, vol. 11(8), pages 1-20, July.
    5. Xin Sui & Shengyang Lu & Hai He & Yuting Zhao & Shubo Hu & Ziqian Liu & Hong Gu & Hui Sun, 2020. "Wind-Thermal-Nuclear-Storage Combined Time Division Power Dispatch Based on Numerical Characteristics of Net Load," Energies, MDPI, vol. 13(2), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    2. Ming, Zeng & Ximei, Liu & Lilin, Peng, 2014. "The ancillary services in China: An overview and key issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 83-90.
    3. Yang, Ruixin & Xiong, Rui & Ma, Suxiao & Lin, Xinfan, 2020. "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, Elsevier, vol. 260(C).
    4. Lixing Chen & Zhong Chen & Xueliang Huang & Long Jin, 2016. "A Study on Price-Based Charging Strategy for Electric Vehicles on Expressways," Energies, MDPI, vol. 9(5), pages 1-18, May.
    5. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    6. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    7. Homa Rashidizadeh-Kermani & Hamid Reza Najafi & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2018. "Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets," Energies, MDPI, vol. 11(9), pages 1-20, September.
    8. Ivana Semanjski & Sidharta Gautama, 2016. "Forecasting the State of Health of Electric Vehicle Batteries to Evaluate the Viability of Car Sharing Practices," Energies, MDPI, vol. 9(12), pages 1-17, December.
    9. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    10. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    11. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    12. Wang, Chun & Yang, Ruixin & Yu, Quanqing, 2019. "Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty," Applied Energy, Elsevier, vol. 256(C).
    13. Lopez, A. & Ogayar, B. & Hernández, J.C. & Sutil, F.S., 2020. "Survey and assessment of technical and economic features for the provision of frequency control services by household-prosumers," Energy Policy, Elsevier, vol. 146(C).
    14. Parinaz Aliasghari & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Ali Ahmadian & Ali Elkamel, 2020. "Goal Programming Application for Contract Pricing of Electric Vehicle Aggregator in Join Day-Ahead Market," Energies, MDPI, vol. 13(7), pages 1-12, April.
    15. Lixing Chen & Xueliang Huang & Hong Zhang & Yinsheng Luo, 2018. "A Study on Coordinated Optimization of Electric Vehicle Charging and Charging Pile Selection," Energies, MDPI, vol. 11(6), pages 1-16, May.
    16. Zhu, Xianwen & Xia, Mingchao & Chiang, Hsiao-Dong, 2018. "Coordinated sectional droop charging control for EV aggregator enhancing frequency stability of microgrid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 210(C), pages 936-943.
    17. Su Su & Yong Hu & Tiantian Yang & Shidan Wang & Ziqi Liu & Xiangxiang Wei & Mingchao Xia & Yutaka Ota & Koji Yamashita, 2018. "Research on an Electric Vehicle Owner-Friendly Charging Strategy Using Photovoltaic Generation at Office Sites in Major Chinese Cities," Energies, MDPI, vol. 11(2), pages 1-19, February.
    18. Li, Shuangqi & He, Hongwen & Su, Chang & Zhao, Pengfei, 2020. "Data driven battery modeling and management method with aging phenomenon considered," Applied Energy, Elsevier, vol. 275(C).
    19. Lisa Ruttledge & Damian Flynn, 2015. "Short‐term frequency response of power systems with high non‐synchronous penetration levels," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 452-470, September.
    20. Filip Maletić & Mario Hrgetić & Joško Deur, 2020. "Dual Nonlinear Kalman Filter-Based SoC and Remaining Capacity Estimation for an Electric Scooter Li-NMC Battery Pack," Energies, MDPI, vol. 13(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1657-:d:154442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.