IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3834-d1704902.html
   My bibliography  Save this article

A Critical Review of the State Estimation Methods of Power Batteries for Electric Vehicles

Author

Listed:
  • Qi Zhang

    (School of Control Science and Engineering, Shandong University, Jinan 250061, China)

  • Hailin Rong

    (School of Control Science and Engineering, Shandong University, Jinan 250061, China)

  • Daduan Zhao

    (School of Control Science and Engineering, Shandong University, Jinan 250061, China)

  • Menglu Pei

    (School of Control Science and Engineering, Shandong University, Jinan 250061, China)

  • Xing Dong

    (School of Control Science and Engineering, Shandong University, Jinan 250061, China)

Abstract

Power batteries and their management technology are crucial for the safe and efficient operation of electric vehicles (EVs). The life and safety issues of power batteries have always plagued the EV industry. To achieve an intelligent battery management system (BMS), it is crucial to accurately estimate the internal state of the power battery. The purpose of this review is to analyze the current status of research on multi-state estimation of power batteries, which mainly focuses on the estimation of state of charge (SOC), state of energy (SOE), state of health (SOH), state of power (SOP), state of temperature (SOT), and state of safety (SOS). Moreover, it also analyzes and prospects the research hotspots, development trends, and future challenges of battery state estimation. It is a significant guide for designing BMSs for EVs, as well as for achieving intelligent safety management and efficient power battery use.

Suggested Citation

  • Qi Zhang & Hailin Rong & Daduan Zhao & Menglu Pei & Xing Dong, 2025. "A Critical Review of the State Estimation Methods of Power Batteries for Electric Vehicles," Energies, MDPI, vol. 18(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3834-:d:1704902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Rui & Duan, Bin & Zhang, Junming & Zhang, Qi & Zhang, Chenghui, 2020. "Co-estimation of model parameters and state-of-charge for lithium-ion batteries with recursive restricted total least squares and unscented Kalman filter," Applied Energy, Elsevier, vol. 277(C).
    2. Lei Pei & Yuhong Wu & Xiaoling Shen & Cheng Yu & Zhuoran Wen & Tiansi Wang, 2025. "Energy State Estimation for Series-Connected Battery Packs Based on Online Curve Construction of Pack Comprehensive OCV," Energies, MDPI, vol. 18(7), pages 1-20, April.
    3. Alexandre F. M. Correia & Pedro Moura & AnĂ­bal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    4. Xingxing Wang & Shengren Liu & Yujie Zhang & Shuaishuai Lv & Hongjun Ni & Yelin Deng & Yinnan Yuan, 2022. "A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System," Energies, MDPI, vol. 15(6), pages 1-29, March.
    5. Dong, Guangzhong & Zhang, Xu & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state of energy estimation of lithium-ion batteries based on neural network model," Energy, Elsevier, vol. 90(P1), pages 879-888.
    6. He, HongWen & Zhang, YongZhi & Xiong, Rui & Wang, Chun, 2015. "A novel Gaussian model based battery state estimation approach: State-of-Energy," Applied Energy, Elsevier, vol. 151(C), pages 41-48.
    7. Marian Kampik & Marcin Fice & Krzysztof Sztymelski & Wojciech Oliwa & Grzegorz Wieczorek, 2025. "Examples of Problems with Estimating the State of Charge of Batteries for Micro Energy Systems," Energies, MDPI, vol. 18(11), pages 1-25, May.
    8. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    9. Hongxia Chen & Xiaoyue Liu & Jeongsoo Yu & Kazuaki Okubo, 2025. "Residual Performance Evaluation of Electric Vehicle Batteries: Focusing on the Analysis Results of a Social Survey of Vehicle Owners," Sustainability, MDPI, vol. 17(10), pages 1-19, May.
    10. Qian, Cheng & Guan, Hongsheng & Xu, Binghui & Xia, Quan & Sun, Bo & Ren, Yi & Wang, Zili, 2024. "A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions," Energy, Elsevier, vol. 294(C).
    11. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    12. Hong-Wen He & Rui Xiong & Yu-Hua Chang, 2010. "Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications," Energies, MDPI, vol. 3(11), pages 1-10, November.
    13. Xia, Bizhong & Chen, Chaoren & Tian, Yong & Wang, Mingwang & Sun, Wei & Xu, Zhihui, 2015. "State of charge estimation of lithium-ion batteries based on an improved parameter identification method," Energy, Elsevier, vol. 90(P2), pages 1426-1434.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    3. Lai, Xin & Huang, Yunfeng & Gu, Huanghui & Han, Xuebing & Feng, Xuning & Dai, Haifeng & Zheng, Yuejiu & Ouyang, Minggao, 2022. "Remaining discharge energy estimation for lithium-ion batteries based on future load prediction considering temperature and ageing effects," Energy, Elsevier, vol. 238(PA).
    4. Wang, Yujie & Chen, Zonghai & Zhang, Chenbin, 2017. "On-line remaining energy prediction: A case study in embedded battery management system," Applied Energy, Elsevier, vol. 194(C), pages 688-695.
    5. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    6. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    7. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    8. Xia, Bizhong & Cui, Deyu & Sun, Zhen & Lao, Zizhou & Zhang, Ruifeng & Wang, Wei & Sun, Wei & Lai, Yongzhi & Wang, Mingwang, 2018. "State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network," Energy, Elsevier, vol. 153(C), pages 694-705.
    9. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    10. Yujie Cheng & Laifa Tao & Chao Yang, 2017. "Lithium-Ion Battery Capacity Estimation: A Method Based on Visual Cognition," Complexity, Hindawi, vol. 2017, pages 1-13, December.
    11. Chen, Yuan & Duan, Wenxian & Huang, Xiaohe & Wang, Shunli, 2024. "Multi-output fusion SOC and SOE estimation algorithm based on deep network migration," Energy, Elsevier, vol. 308(C).
    12. Chen, Lin & Lin, Weilong & Li, Junzi & Tian, Binbin & Pan, Haihong, 2016. "Prediction of lithium-ion battery capacity with metabolic grey model," Energy, Elsevier, vol. 106(C), pages 662-672.
    13. Yixing Chen & Deqing Huang & Qiao Zhu & Weiqun Liu & Congzhi Liu & Neng Xiong, 2017. "A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter," Energies, MDPI, vol. 10(9), pages 1-19, September.
    14. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2016. "A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty," Energy, Elsevier, vol. 109(C), pages 933-946.
    15. Song, Ziyou & Hou, Jun & Li, Xuefeng & Wu, Xiaogang & Hu, Xiaosong & Hofmann, Heath & Sun, Jing, 2020. "The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection," Energy, Elsevier, vol. 193(C).
    16. Zeeshan Ahmad Khan & Prashant Shrivastava & Syed Muhammad Amrr & Saad Mekhilef & Abdullah A. Algethami & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "A Comparative Study on Different Online State of Charge Estimation Algorithms for Lithium-Ion Batteries," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    17. Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & He, Tingting & Wei, Yiying, 2016. "Novel methods for estimating lithium-ion battery state of energy and maximum available energy," Applied Energy, Elsevier, vol. 178(C), pages 1-8.
    18. Tu, Hao & Borah, Manashita & Moura, Scott & Wang, Yebin & Fang, Huazhen, 2024. "Remaining discharge energy prediction for lithium-ion batteries over broad current ranges: A machine learning approach," Applied Energy, Elsevier, vol. 376(PA).
    19. Stefano Leonori & Luca Baldini & Antonello Rizzi & Fabio Massimo Frattale Mascioli, 2021. "A Physically Inspired Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells," Energies, MDPI, vol. 14(21), pages 1-29, November.
    20. Deng, Zhongwei & Yang, Lin & Cai, Yishan & Deng, Hao & Sun, Liu, 2016. "Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery," Energy, Elsevier, vol. 112(C), pages 469-480.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3834-:d:1704902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.