IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3407-d1689790.html
   My bibliography  Save this article

Assessing Fire Risks in Photovoltaic Panels: A Literature Review in the Context of Blackout Concerns

Author

Listed:
  • Małgorzata Rataj

    (Department of Cognitive Science and Mathematical Modeling, University of Information Technology and Management in Rzeszow, 35-225 Rzeszow, Poland)

  • Iryna Berezovska

    (Department of Cognitive Science and Mathematical Modeling, University of Information Technology and Management in Rzeszow, 35-225 Rzeszow, Poland)

Abstract

In recent years, Europe has faced several major blackouts, exposing weaknesses in its energy infrastructure and raising serious concerns about the continent’s ability to manage such crises. As the shift toward sustainable energy accelerates, solar power has emerged as a critical component of this transition, not only for its environmental benefits but also because it is currently the most cost-effective method of electricity generation. Over the past two decades, the photovoltaic (PV) sector has experienced continuous growth to meet rising energy demands. Published scientific studies on the technology and implementation of photovoltaic panels mainly focus on the benefits and present case studies of success. The article aims to outline the current state of research on the danger of spontaneous ignition of photovoltaic panels. The analysis revealed the most common causes of PV self-ignition. Moreover, following consultations with experts in the field of photovoltaic panel installations, a scientific gap in this area was identified—to the authors’ knowledge, no one has written on this topic so far—the use of flammable materials in the form of hermetically sealed quick connectors. The research is based on a literature review, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method to perform a bibliometric analysis of papers published between 2013 and 2024. The Web of Science Core Collection (WoSCC) and the ScienceDirect database are used for this purpose. A total of 62 papers are selected for analysis and categorized based on five fields: keywords in a title and abstract, total number of citations per paper, total number of publications per journal, total number of publications per affiliation, and funding name.

Suggested Citation

  • Małgorzata Rataj & Iryna Berezovska, 2025. "Assessing Fire Risks in Photovoltaic Panels: A Literature Review in the Context of Blackout Concerns," Energies, MDPI, vol. 18(13), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3407-:d:1689790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    2. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    3. Rydehell, Hanna & Lantz, Björn & Mignon, Ingrid & Lindahl, Johan, 2024. "The impact of solar PV subsidies on investment over time - the case of Sweden," Energy Economics, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    2. Liu, Shen & Colson, Gregory & Hao, Na & Wetzstein, Michael, 2018. "Toward an optimal household solar subsidy: A social-technical approach," Energy, Elsevier, vol. 147(C), pages 377-387.
    3. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    4. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    5. Chaymae Boubii & Ismail El Kafazi & Rachid Bannari & Brahim El Bhiri & Badre Bossoufi & Hossam Kotb & Kareem M. AboRas & Ahmed Emara & Badr Nasiri, 2024. "Synergizing Wind and Solar Power: An Advanced Control System for Grid Stability," Sustainability, MDPI, vol. 16(2), pages 1-44, January.
    6. Yuzhe Qin & Qing Cheng, 2025. "Optimization Study of Photovoltaic Cell Arrangement Strategies in Greenhouses," Energies, MDPI, vol. 18(1), pages 1-28, January.
    7. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    8. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    9. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    10. Shan, Chuan & Sun, Kangwen & Ji, Xinzhe & Cheng, Dongji, 2023. "A reconfiguration method for photovoltaic array of stratospheric airship based on multilevel optimization algorithm," Applied Energy, Elsevier, vol. 352(C).
    11. Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
    12. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    13. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    14. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    15. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.
    16. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    17. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1-19, January.
    18. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Zhao, Xudong & Pei, Gang, 2019. "The design, construction and experimental characterization of a novel concentrating photovoltaic/daylighting window for green building roof," Energy, Elsevier, vol. 175(C), pages 1138-1152.
    19. Kusakana, Kanzumba, 2014. "Techno-economic analysis of off-grid hydrokinetic-based hybrid energy systems for onshore/remote area in South Africa," Energy, Elsevier, vol. 68(C), pages 947-957.
    20. Lv, Ruidong & Zha, Xudong & Hu, Hengwu & Lei, Bingbing & Niu, Chao, 2025. "A review on the influencing factors of solar pavement power generation efficiency," Applied Energy, Elsevier, vol. 379(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3407-:d:1689790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.