IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3178-d1680834.html
   My bibliography  Save this article

A Constant-Pressure Air Storage Operation Strategy for an Isothermal Compressed Air Energy Storage System Based on a Linear-Drive Liquid Piston

Author

Listed:
  • Yan Cui

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Tong Jiang

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Zhengda Chen

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

Compressed air energy storage (CAES) systems represent a critical technological solution for addressing power grid load fluctuations by generating electrical power during peak load periods and storing energy during low load periods. As a prominent branch of CAES, isothermal compressed air energy storage (ICAES) systems have attracted significant research attention due to their elimination of requirements for high-temperature storage chambers and high-temperature compressors. Implementing constant-pressure operation in air storage reservoirs not only enhances energy storage density but also improves system safety. However, existing constant-pressure air storage methodologies necessitate supplementary infrastructure, such as high-pressure water reservoirs or elevated hydraulic columns, thereby escalating capital expenditures. This study introduces a novel constant-pressure air storage strategy for ICAES systems utilizing a linear-driven liquid piston mechanism. The proposed approach achieves constant-pressure air storage through the dual-mode operation strategies of buffer tanks (CBA and CBP modes) and hydraulic cylinders (CPP and CPW modes), eliminating the requirement for an auxiliary high-pressure apparatus or extensive civil engineering modifications. A prototype two-stage constant-pressure ICAES architecture was proposed, integrating low-pressure equipment with liquid pistons and providing detailed operational processes for preconditioning, energy storage, and power generation. A comprehensive mathematical model of the system is developed and validated through process simulation and performance characterization of a 100 kWh capacity system. It demonstrates that under operational conditions of 1 MPa of low pressure and 5 MPa of storage pressure, the system achieves an efficiency of 74.0% when the low-pressure equipment and liquid piston exhibit efficiencies of 85% and 90%, respectively. Furthermore, parametric analysis reveals a negative correlation between system efficiency and low-pressure parameters.

Suggested Citation

  • Yan Cui & Tong Jiang & Zhengda Chen, 2025. "A Constant-Pressure Air Storage Operation Strategy for an Isothermal Compressed Air Energy Storage System Based on a Linear-Drive Liquid Piston," Energies, MDPI, vol. 18(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3178-:d:1680834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3178/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3178-:d:1680834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.