IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6232-d898813.html
   My bibliography  Save this article

Optimization of Micro-CAES and TES Systems for Trigeneration

Author

Listed:
  • Paolo Maria Congedo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

  • Cristina Baglivo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

  • Simone Panico

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
    Institute for Renewable Energies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy)

  • Domenico Mazzeo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
    Department of Mechanical, Energy and Management Engineering (DIMEG), University of Calabria, 87036 Rende, Italy)

  • Nicoletta Matera

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

Abstract

Energy storage makes energy continuously available, programmable, and at power levels different from the original intensity. This study investigates the feasibility of compressed-air energy storage (CAES) systems on a small scale. In addition to the CAES systems, there are two TES (thermal energy storage) systems for the recovery of calories and frigories. The micro-CAES + TES system is designed for a single-family residential building equipped with a photovoltaic system with a nominal power of 3 kW. The system is optimized as a potential alternative to battery storage for a typical domestic photovoltaic system. The multi-objective optimization analysis is carried out with the modeFRONTIER software. Once the best configuration of the micro-CAES + TES system is identified, it is compared with electrochemical storage systems, considering costs, durability, and performance. The efficiency of CAES (8.4%) is almost one-tenth of the efficiency of the most efficient batteries on the market (70–90%). Its discharge times are also extremely short. It is shown that the advantages offered by the application of mechanical accumulation on a small scale are mainly related to the exploitation of the thermal waste of the process and the estimated useful life compared to the batteries currently on the market. The studied system proves to be non-competitive compared to batteries because of its minimal efficiency and high cost.

Suggested Citation

  • Paolo Maria Congedo & Cristina Baglivo & Simone Panico & Domenico Mazzeo & Nicoletta Matera, 2022. "Optimization of Micro-CAES and TES Systems for Trigeneration," Energies, MDPI, vol. 15(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6232-:d:898813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6232/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    2. Luo, Xing & Wang, Jihong & Krupke, Christopher & Wang, Yue & Sheng, Yong & Li, Jian & Xu, Yujie & Wang, Dan & Miao, Shihong & Chen, Haisheng, 2016. "Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage," Applied Energy, Elsevier, vol. 162(C), pages 589-600.
    3. Pal, Pikaso & Mukherjee, V., 2021. "Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in N," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Li, Yongliang & Wang, Xiang & Li, Dacheng & Ding, Yulong, 2012. "A trigeneration system based on compressed air and thermal energy storage," Applied Energy, Elsevier, vol. 99(C), pages 316-323.
    6. Mazzeo, Domenico & Matera, Nicoletta & De Luca, Pierangelo & Baglivo, Cristina & Maria Congedo, Paolo & Oliveti, Giuseppe, 2020. "Worldwide geographical mapping and optimization of stand-alone and grid-connected hybrid renewable system techno-economic performance across Köppen-Geiger climates," Applied Energy, Elsevier, vol. 276(C).
    7. Mazzeo, Domenico & Oliveti, Giuseppe & Baglivo, Cristina & Congedo, Paolo M., 2018. "Energy reliability-constrained method for the multi-objective optimization of a photovoltaic-wind hybrid system with battery storage," Energy, Elsevier, vol. 156(C), pages 688-708.
    8. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    9. Cheekatamarla, Praveen K. & Kassaee, Saiid & Abu-Heiba, Ahmad & Momen, Ayyoub M., 2022. "Near isothermal compressed air energy storage system in residential and commercial buildings: Techno-economic analysis," Energy, Elsevier, vol. 251(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios E. Arnaoutakis & Gudrun Kocher-Oberlehner & Dimitris Al. Katsaprakakis, 2023. "Criteria-Based Model of Hybrid Photovoltaic–Wind Energy System with Micro-Compressed Air Energy Storage," Mathematics, MDPI, vol. 11(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    2. Roos, P. & Haselbacher, A., 2022. "Analytical modeling of advanced adiabatic compressed air energy storage: Literature review and new models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Bai, Jiayu & Liu, Feng & Xue, Xiaodai & Wei, Wei & Chen, Laijun & Wang, Guohua & Mei, Shengwei, 2021. "Modelling and control of advanced adiabatic compressed air energy storage under power tracking mode considering off-design generating conditions," Energy, Elsevier, vol. 218(C).
    4. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2019. "Modelling and experimental validation of a small-scale trigenerative compressed air energy storage system," Applied Energy, Elsevier, vol. 239(C), pages 1371-1384.
    5. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2017. "Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems," Applied Energy, Elsevier, vol. 206(C), pages 1552-1563.
    6. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    7. He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
    8. Luo, Xing & Dooner, Mark & He, Wei & Wang, Jihong & Li, Yaowang & Li, Decai & Kiselychnyk, Oleh, 2018. "Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications," Applied Energy, Elsevier, vol. 228(C), pages 1198-1219.
    9. Shang Chen & Ahmad Arabkoohsar & Guodong Chen & Mads Pagh Nielsen, 2022. "Optimization of a Hybrid Energy System with District Heating and Cooling Considering Off-Design Characteristics of Components, an Effort on Optimal Compressed Air Energy Storage Integration," Energies, MDPI, vol. 15(13), pages 1-21, June.
    10. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    11. Eslami, M. & Nahani, P., 2021. "How policies affect the cost-effectiveness of residential renewable energy in Iran: A techno-economic analysis for optimization," Utilities Policy, Elsevier, vol. 72(C).
    12. Li, Ruixiong & Wang, Huanran & Zhang, Haoran, 2019. "Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 326-339.
    13. Chen Yang & Li Sun & Hao Chen, 2023. "Thermodynamics Analysis of a Novel Compressed Air Energy Storage System Combined with Solid Oxide Fuel Cell–Micro Gas Turbine and Using Low-Grade Waste Heat as Heat Source," Energies, MDPI, vol. 16(19), pages 1-28, October.
    14. Li, Yaowang & Miao, Shihong & Luo, Xing & Yin, Binxin & Han, Ji & Wang, Jihong, 2020. "Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid," Applied Energy, Elsevier, vol. 261(C).
    15. Han, Ji & Miao, Shihong & Chen, Zhe & Liu, Zhou & Li, Yaowang & Yang, Weichen & Liu, Ziwen, 2021. "Multi-View clustering and discrete consensus based tri-level coordinated control of wind farm and adiabatic compressed air energy storage for providing frequency regulation service," Applied Energy, Elsevier, vol. 304(C).
    16. He, Xin & Li, ChengChen & Wang, Huanran, 2022. "Thermodynamics analysis of a combined cooling, heating and power system integrating compressed air energy storage and gas-steam combined cycle," Energy, Elsevier, vol. 260(C).
    17. Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
    18. Zhang, Zhi & Zhou, Ming & Chen, Yanbo & Li, Gengyin, 2023. "Exploiting the operational flexibility of AA-CAES in energy and reserve optimization scheduling by a linear reserve model," Energy, Elsevier, vol. 263(PE).
    19. Thomas Guewouo & Lingai Luo & Dominique Tarlet & Mohand Tazerout, 2019. "Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm," Energies, MDPI, vol. 12(3), pages 1-32, January.
    20. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6232-:d:898813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.