IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3675-d1699610.html
   My bibliography  Save this article

Analogy Analysis of Height Exergy and Temperature Exergy in Energy Storage System

Author

Listed:
  • Yan Cui

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Tong Jiang

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Mulin Liu

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

As a pivotal technology and infrastructure component for modern power systems, energy storage has experienced significant advancement in recent years. A fundamental prerequisite for designing future energy storage facilities lies in the systematic evaluation of energy conversion capabilities across diverse storage technologies. This study conducted a comparative analysis between pumped hydroelectric storage (PHS) and compressed air energy storage (CAES), defining the concepts of height exergy and temperature exergy. Height exergy is the maximum work capacity of a liquid due to height differences, while temperature exergy is the maximum work capacity of a gas due to temperature differences. The temperature exergy represents innovation in thermodynamic analysis; it is derived from internal exergy and proven through the Maxwell relation and the decoupling method of internal exergy, offering a more efficient method for calculating energy storage capacity in CAES systems. Mathematical models of height exergy and temperature exergy were established based on their respective forms. A unified calculation formula was derived, and their respective characteristics were analyzed. In order to show the meaning of temperature exergy more clearly and intuitively, a height exergy model of temperature exergy was established through analogy analysis, and it was concluded that the shape of the reservoir was a cone when comparing water volume to heat quantity, intuitively showing that the cold source had a higher energy storage density than the heat source. Finally, a typical hybrid PHS–CAES system was proposed, and a mathematical model was established and verified in specific cases based on height exergy and temperature exergy. It was demonstrated that when the polytropic exponent n = 1.2, the theoretical loss accounted for the largest proportion, which was 2.06%.

Suggested Citation

  • Yan Cui & Tong Jiang & Mulin Liu, 2025. "Analogy Analysis of Height Exergy and Temperature Exergy in Energy Storage System," Energies, MDPI, vol. 18(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3675-:d:1699610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Padrón, S. & Medina, J.F. & Rodríguez, A., 2011. "Analysis of a pumped storage system to increase the penetration level of renewable energy in isolated power systems. Gran Canaria: A case study," Energy, Elsevier, vol. 36(12), pages 6753-6762.
    2. Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2020. "An alternative sequence of operation for Pumped-Hydro Compressed Air Energy Storage (PH-CAES) systems," Energy, Elsevier, vol. 191(C).
    3. Cheekatamarla, Praveen K. & Kassaee, Saiid & Abu-Heiba, Ahmad & Momen, Ayyoub M., 2022. "Near isothermal compressed air energy storage system in residential and commercial buildings: Techno-economic analysis," Energy, Elsevier, vol. 251(C).
    4. Bennett, Jeffrey A. & Fitts, Jeffrey P. & Clarens, Andres F., 2022. "Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling," Applied Energy, Elsevier, vol. 325(C).
    5. Kim, Y.M. & Favrat, D., 2010. "Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system," Energy, Elsevier, vol. 35(1), pages 213-220.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Cui & Tong Jiang & Zhengda Chen, 2025. "A Constant-Pressure Air Storage Operation Strategy for an Isothermal Compressed Air Energy Storage System Based on a Linear-Drive Liquid Piston," Energies, MDPI, vol. 18(12), pages 1-24, June.
    2. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    3. Aolei Chen & Xinyuan Nan & Xin Cai, 2025. "Dynamic Modeling and Performance Analysis of Liquid Carbon Dioxide Energy Storage System," Energies, MDPI, vol. 18(11), pages 1-22, June.
    4. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    5. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    6. Li, Yongliang & Wang, Xiang & Li, Dacheng & Ding, Yulong, 2012. "A trigeneration system based on compressed air and thermal energy storage," Applied Energy, Elsevier, vol. 99(C), pages 316-323.
    7. Zhang, Yufei & Zhang, Wenlong & Li, Ruixiong & Wang, Huanran & He, Xin & Li, Xiangdong & Du, Junyu & Zhang, Xuanhao, 2024. "Thermodynamic and economic analysis of a novel compressed air energy storage system coupled with solar energy and liquid piston energy storage and release," Energy, Elsevier, vol. 311(C).
    8. Li, Yi & Xue, Ping & Li, Yi & Liu, Yaning & Wang, Jingrui & Yin, Wenjie, 2025. "Modeling underground performance of compressed air energy storage in a practical flat aquifer: Insights on the permeability effects," Energy, Elsevier, vol. 322(C).
    9. Xu, Qingyang & Sun, Feihu & Cai, Qiran & Liu, Li-Jing & Zhang, Kun & Liang, Qiao-Mei, 2022. "Assessment of the influence of demand-side responses on high-proportion renewable energy system: An evidence of Qinghai, China," Renewable Energy, Elsevier, vol. 190(C), pages 945-958.
    10. Diego Rodríguez Rodríguez, 2019. "Los costes de la transición: las centrales de bombeo y el gas en sistemas aislados," Studies on the Spanish Economy eee2019-13, FEDEA.
    11. Hilario J. Torres-Herrera & Alexis Lozano-Medina, 2021. "Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island," Energies, MDPI, vol. 14(12), pages 1-27, June.
    12. Facci, Andrea L. & Sánchez, David & Jannelli, Elio & Ubertini, Stefano, 2015. "Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment," Applied Energy, Elsevier, vol. 158(C), pages 243-254.
    13. Paolo Maria Congedo & Cristina Baglivo & Simone Panico & Domenico Mazzeo & Nicoletta Matera, 2022. "Optimization of Micro-CAES and TES Systems for Trigeneration," Energies, MDPI, vol. 15(17), pages 1-14, August.
    14. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    15. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling, simulation, and optimisation of a novel liquid piston system for energy recovery," Applied Energy, Elsevier, vol. 357(C).
    16. Meschede, Henning, 2019. "Increased utilisation of renewable energies through demand response in the water supply sector – A case study," Energy, Elsevier, vol. 175(C), pages 810-817.
    17. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    18. Flora, Rui & Marques, António Cardoso & Fuinhas, José Alberto, 2014. "Wind power idle capacity in a panel of European countries," Energy, Elsevier, vol. 66(C), pages 823-830.
    19. Shkolnikov, E.I. & Zhuk, A.Z. & Vlaskin, M.S., 2011. "Aluminum as energy carrier: Feasibility analysis and current technologies overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4611-4623.
    20. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3675-:d:1699610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.