IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3012-d1673426.html
   My bibliography  Save this article

Future Energy Consumption and Economic Implications of Transport Policies: A Scenario-Based Analysis for 2030 and 2050

Author

Listed:
  • Ammar Al-lami

    (Department of Transport Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
    Department of Civil Engineering, Faculty of Engineering, University of Misan, P.O. Box 132, Misan 62001, Iraq)

  • Adám Török

    (Department of Transport Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
    Strategic, Research-Development and Innovation Directorate, KTI Nonprofit Ltd., Than Karoly Str. 3-5, H-1119 Budapest, Hungary)

  • Anas Alatawneh

    (Department of Transport Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary)

  • Mohammed Alrubaye

    (Department of Civil Engineering, Faculty of Engineering, University of Misan, P.O. Box 132, Misan 62001, Iraq)

Abstract

The transition to sustainable transport poses significant challenges for urban mobility, requiring shifts in fuel consumption, emissions reductions, and economic adjustments. This study conducts a scenario-based analysis of Budapest’s transport energy consumption, emissions, and monetary implications for 2020, 2030, and 2050 using the Budapest Transport Model (EFM), which integrates COPERT and HBEFA within PTV VISUM. This research examines the evolution of diesel, gasoline, and electric vehicle (EV) energy use alongside forecasted fuel prices, using the ARIMA model to assess the economic impact of transport decarbonisation. The findings reveal a 32.8% decline in diesel consumption and a 64.7% drop in gasoline usage by 2050, despite increasing vehicle kilometres travelled (VKT). Electricity consumption surged 97-fold, highlighting fleet electrification trends, while CO 2 emissions decreased by 48%, demonstrating the effectiveness of policies, improved vehicle efficiency, and alternative energy adoption. However, fuel price forecasts indicate significant cost escalations, with diesel and gasoline prices doubling and CO 2 pricing increasing sevenfold by 2050, presenting financial challenges in the transition. This study highlights the need for EV incentives, electricity price regulation, public transport investments, and carbon pricing adjustments. Future research should explore energy grid resilience, mobility trends, and alternative fuel adoption to support Budapest’s sustainable transport goals.

Suggested Citation

  • Ammar Al-lami & Adám Török & Anas Alatawneh & Mohammed Alrubaye, 2025. "Future Energy Consumption and Economic Implications of Transport Policies: A Scenario-Based Analysis for 2030 and 2050," Energies, MDPI, vol. 18(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3012-:d:1673426
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3012/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3012/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsemekidi Tzeiranaki, Sofia & Economidou, Marina & Bertoldi, Paolo & Thiel, Christian & Fontaras, Georgios & Clementi, Enrico Luca & Franco De Los Rios, Camilo, 2023. "“The impact of energy efficiency and decarbonisation policies on the European road transport sector”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    2. Jana Chovancová & Lenka Štofejová & Štefan Gavura & Roman Novotný & Martin Rigelský, 2024. "Assessing energy consumption and greenhouse gas emissions in EU member states – decomposition analysis," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 11(4), pages 242-259, June.
    3. Paulo J. G. Ribeiro & Gabriel Dias & José F. G. Mendes, 2024. "Decarbonizing Urban Mobility: A Methodology for Shifting Modal Shares to Achieve CO 2 Reduction Targets," Sustainability, MDPI, vol. 16(16), pages 1-12, August.
    4. Ammar Al-lami & Adam Torok, 2023. "Sustainability Indicators of Surface Public Transportation," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    5. Susan C. Anenberg & Joshua Miller & Ray Minjares & Li Du & Daven K. Henze & Forrest Lacey & Christopher S. Malley & Lisa Emberson & Vicente Franco & Zbigniew Klimont & Chris Heyes, 2017. "Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets," Nature, Nature, vol. 545(7655), pages 467-471, May.
    6. Mihaela Simionescu & Wadim Strielkowski & Manuela Tvaronavičienė, 2020. "Renewable Energy in Final Energy Consumption and Income in the EU-28 Countries," Energies, MDPI, vol. 13(9), pages 1-18, May.
    7. Adriana Scrioșteanu & Maria Magdalena Criveanu, 2025. "Sustainable Transport Between Reality and Legislative Provisions—The Source for the Climate Neutrality of the European Union," Sustainability, MDPI, vol. 17(7), pages 1-27, March.
    8. Luin, Blaž & Petelin, Stojan & Al-Mansour, Fouad, 2019. "Microsimulation of electric vehicle energy consumption," Energy, Elsevier, vol. 174(C), pages 24-32.
    9. Vasile Dinu, 2023. "Clean, Diversified, and Affordable Energy for the European Union in the Context of the REPowerEU Plan," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 654-654, August.
    10. González Palencia, Juan C. & Otsuka, Yuki & Araki, Mikiya & Shiga, Seiichi, 2017. "Scenario analysis of lightweight and electric-drive vehicle market penetration in the long-term and impact on the light-duty vehicle fleet," Applied Energy, Elsevier, vol. 204(C), pages 1444-1462.
    11. Maja Kiba-Janiak & Jarosław Witkowski, 2019. "Sustainable Urban Mobility Plans: How Do They Work?," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    2. Zheng, Mingbo & Zhang, Xinyu, 2025. "Digitalization and renewable energy development: Analysis based on cross-country panel data," Energy, Elsevier, vol. 319(C).
    3. Baltazar, Julien & Bouillass, Ghada & Vallet, Flore & Puchinger, Jakob & Perry, Nicolas, 2024. "Integrating environmental issues into the design of mobility plans: Insights from French practices," Transport Policy, Elsevier, vol. 155(C), pages 1-14.
    4. Armenia Androniceanu & Irina Georgescu & Ionuț Nica & Nora Chiriță, 2023. "A Comprehensive Analysis of Renewable Energy Based on Integrating Economic Cybernetics and the Autoregressive Distributed Lag Model—The Case of Romania," Energies, MDPI, vol. 16(16), pages 1-28, August.
    5. Jaroslaw Witkowski & Jakub Marcinkowski & Maja Kiba-Janiak, 2020. "A Comparative Analysis of Electronic Freight Exchanges in the United States and Europe with the Use of the Multiple Criteria Decision-Making Method “Promethee”," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 476-487.
    6. Wen-jun Wang & Yan-ni Liu & Xin-ru Ying, 2022. "Does Technological Innovation Curb O 3 Pollution? Evidence from Three Major Regions in China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    7. Xiyang Wang & Qilei Yang & Xinbo Li & Zhen Li & Chuan Gao & Hui Zhang & Xuefeng Chu & Carl Redshaw & Shucheng Shi & Yimin A. Wu & Yongliang Ma & Yue Peng & Junhua Li & Shouhua Feng, 2024. "Exploring the dynamic evolution of lattice oxygen on exsolved-Mn2O3@SmMn2O5 interfaces for NO Oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    9. Magdalena Żak & Anna Mainka, 2020. "Cross-Regional Highway Built through a City Centre as an Example of the Sustainable Development of Urban Transport," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    10. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    11. Cai, Hao & Burnham, Andrew & Chen, Rui & Wang, Michael, 2017. "Wells to wheels: Environmental implications of natural gas as a transportation fuel," Energy Policy, Elsevier, vol. 109(C), pages 565-578.
    12. Yang, Shuo & Zhou, Leyu & Zhang, Zhehao & Sun, Shan & Guo, Liang, 2024. "Examining the correlation of household electric vehicle ownership: Insights for emerging mobility and planning," Journal of Transport Geography, Elsevier, vol. 118(C).
    13. Tao Wang & Kai Zhang & Keliang Liu & Keke Ding & Wenwen Qin, 2023. "Spatial Heterogeneity and Scale Effects of Transportation Carbon Emission-Influencing Factors—An Empirical Analysis Based on 286 Cities in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    14. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    15. Paweł Dec & Jacek Wysocki, 2022. "In Search of Non-Obvious Relationships between Greenhouse Gas or Particulate Matter Emissions, Renewable Energy and Corruption," Energies, MDPI, vol. 15(4), pages 1-20, February.
    16. Paula Quentin & Jost Buscher & Thomas Eltner, 2023. "Transport Planning beyond Infrastructural Change: An Empirical Analysis of Transport Planning Practices in the Rhine-Main Region in Germany," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    17. Lu Wang & Xue Chen & Yan Xia & Linhui Jiang & Jianjie Ye & Tangyan Hou & Liqiang Wang & Yibo Zhang & Mengying Li & Zhen Li & Zhe Song & Yaping Jiang & Weiping Liu & Pengfei Li & Xiaoye Zhang & Shaocai, 2022. "Operational Data-Driven Intelligent Modelling and Visualization System for Real-World, On-Road Vehicle Emissions—A Case Study in Hangzhou City, China," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    18. Kamila Słupińska & Marek Wieruszewski & Piotr Szczypa & Anna Kożuch & Krzysztof Adamowicz, 2022. "Public Perception of the Use of Woody Biomass for Energy Purposes in the Evaluation of Content and Information Management on the Internet," Energies, MDPI, vol. 15(19), pages 1-11, September.
    19. Sabet, Saba & Farooq, Bilal, 2025. "Exploring the combined effects of major fuel technologies, eco-routing, and eco-driving for sustainable traffic decarbonization in downtown Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    20. Furmankiewicz, Marek & Hewitt, Richard J. & Kazak, Jan K., 2021. "Can rural stakeholders drive the low-carbon transition? Analysis of climate-related activities planned in local development strategies in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3012-:d:1673426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.