IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v109y2017icp565-578.html
   My bibliography  Save this article

Wells to wheels: Environmental implications of natural gas as a transportation fuel

Author

Listed:
  • Cai, Hao
  • Burnham, Andrew
  • Chen, Rui
  • Wang, Michael

Abstract

We assessed freshwater consumption, greenhouse gas (GHG) emissions, and air emissions of using compressed and liquefied natural gas (NG) as transportation fuels by three heavy-duty NG vehicles (NGV) types from a wells-to-wheels (WTW) perspective. We analyzed freshwater consumption for NG production in major U.S. shale gas plays from recent reports and studies. We reviewed recent literature quantifying methane leakage from the NG supply chain and vehicle use to improve the estimates of NGV GHG emissions. Results show that NGVs could reduce freshwater consumption significantly and offer air emissions reduction benefits compared to their diesel counterparts. NGV WTW GHG emissions are largely driven by the vehicle fuel efficiency, as well as methane leakage rates of both the NG supply chain and vehicle end use: we estimate WTW GHG emissions of NGVs to be slightly higher than those of the diesel counterparts given the estimated WTW methane leakage. NGVs utilizing the newest aftertreatment systems have lower WTW and vehicle operation NOx emissions across different duty-cycles and slightly lower WTW PM emissions than their diesel counterparts. We found that the cost-effectiveness of NGVs is impacted by incremental cost of NG storage tanks and the price difference between NG and diesel fuels. These findings for NGVs shed light on their environmental and economic impacts from a WTW holistic point of view.

Suggested Citation

  • Cai, Hao & Burnham, Andrew & Chen, Rui & Wang, Michael, 2017. "Wells to wheels: Environmental implications of natural gas as a transportation fuel," Energy Policy, Elsevier, vol. 109(C), pages 565-578.
  • Handle: RePEc:eee:enepol:v:109:y:2017:i:c:p:565-578
    DOI: 10.1016/j.enpol.2017.07.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151730472X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.07.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rose, Lars & Hussain, Mohammed & Ahmed, Syed & Malek, Kourosh & Costanzo, Robert & Kjeang, Erik, 2013. "A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city," Energy Policy, Elsevier, vol. 52(C), pages 453-461.
    2. Susan C. Anenberg & Joshua Miller & Ray Minjares & Li Du & Daven K. Henze & Forrest Lacey & Christopher S. Malley & Lisa Emberson & Vicente Franco & Zbigniew Klimont & Chris Heyes, 2017. "Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets," Nature, Nature, vol. 545(7655), pages 467-471, May.
    3. Wang, Michael & Huo, Hong & Arora, Salil, 2011. "Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context," Energy Policy, Elsevier, vol. 39(10), pages 5726-5736, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravigné, E. & Da Costa, P., 2021. "Economic and environmental performances of natural gas for heavy trucks: A case study on the French automotive industry supply chain," Energy Policy, Elsevier, vol. 149(C).
    2. Elham Ziar & Mehdi Seifbarghy & Mahdi Bashiri & Benny Tjahjono, 2023. "An efficient environmentally friendly transportation network design via dry ports: a bi-level programming approach," Annals of Operations Research, Springer, vol. 322(2), pages 1143-1166, March.
    3. Shawky Ismail, M. & Etman, Omar A. & Elhelw, Mohamed & Attia, Abdelhamid, 2023. "Decarbonization and enhancement of LNG cascade cycle by optimizing the heat rejection system, hourly evaluation," Energy, Elsevier, vol. 280(C).
    4. Wenze Li & Rui Liu & Yunwei Li, 2023. "Power Quality Enhancement of Remote Gas Field Generations with Smart Power Converters," Energies, MDPI, vol. 16(18), pages 1-22, September.
    5. Stettler, Marc E.J. & Woo, Mino & Ainalis, Daniel & Achurra-Gonzalez, Pablo & Speirs, Jamie & Cooper, Jasmin & Lim, Dong-Ha & Brandon, Nigel & Hawkes, Adam, 2023. "Review of Well-to-Wheel lifecycle emissions of liquefied natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 333(C).
    6. Li, Menghan & Wu, Hanming & Liu, Xiaori & Wei, Zhangning & Tian, Hongjian & Zhang, Qiang & Li, Zhenguo, 2021. "Numerical investigations on pilot ignited high pressure direct injection natural gas engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Pedro G. Machado & Ana C. R. Teixeira & Flavia M. A. Collaço & Dominique Mouette, 2021. "Review of life cycle greenhouse gases, air pollutant emissions and costs of road medium and heavy‐duty trucks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    9. Langshaw, Liam & Ainalis, Daniel & Acha, Salvador & Shah, Nilay & Stettler, Marc E.J., 2020. "Environmental and economic analysis of liquefied natural gas (LNG) for heavy goods vehicles in the UK: A Well-to-Wheel and total cost of ownership evaluation," Energy Policy, Elsevier, vol. 137(C).
    10. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    11. Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen G. Wiedemann & Quan V. Nguyen & Simon J. Clarke, 2022. "Using LCA and Circularity Indicators to Measure the Sustainability of Textiles—Examples of Renewable and Non-Renewable Fibres," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    2. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    3. Wen-jun Wang & Yan-ni Liu & Xin-ru Ying, 2022. "Does Technological Innovation Curb O 3 Pollution? Evidence from Three Major Regions in China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    4. Xiyang Wang & Qilei Yang & Xinbo Li & Zhen Li & Chuan Gao & Hui Zhang & Xuefeng Chu & Carl Redshaw & Shucheng Shi & Yimin A. Wu & Yongliang Ma & Yue Peng & Junhua Li & Shouhua Feng, 2024. "Exploring the dynamic evolution of lattice oxygen on exsolved-Mn2O3@SmMn2O5 interfaces for NO Oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Seber, Gonca & Escobar, Neus & Valin, Hugo & Malina, Robert, 2022. "Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    6. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    7. Pirjola, Liisa & Kuuluvainen, Heino & Timonen, Hilkka & Saarikoski, Sanna & Teinilä, Kimmo & Salo, Laura & Datta, Arindam & Simonen, Pauli & Karjalainen, Panu & Kulmala, Kari & Rönkkö, Topi, 2019. "Potential of renewable fuel to reduce diesel exhaust particle emissions," Applied Energy, Elsevier, vol. 254(C).
    8. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    9. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    10. Li, Ji & Wu, Dawei & Mohammadsami Attar, Hassan & Xu, Hongming, 2022. "Geometric neuro-fuzzy transfer learning for in-cylinder pressure modelling of a diesel engine fuelled with raw microalgae oil," Applied Energy, Elsevier, vol. 306(PA).
    11. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Chen, Yongsheng & Pang, Mingyue, 2018. "Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: System boundary and parameters," Energy, Elsevier, vol. 158(C), pages 121-127.
    12. Paula Quentin & Jost Buscher & Thomas Eltner, 2023. "Transport Planning beyond Infrastructural Change: An Empirical Analysis of Transport Planning Practices in the Rhine-Main Region in Germany," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    13. Lu Wang & Xue Chen & Yan Xia & Linhui Jiang & Jianjie Ye & Tangyan Hou & Liqiang Wang & Yibo Zhang & Mengying Li & Zhen Li & Zhe Song & Yaping Jiang & Weiping Liu & Pengfei Li & Xiaoye Zhang & Shaocai, 2022. "Operational Data-Driven Intelligent Modelling and Visualization System for Real-World, On-Road Vehicle Emissions—A Case Study in Hangzhou City, China," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    14. Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.
    15. Forte, Annachiara & Zucaro, Amalia & Faugno, Salvatore & Basosi, Riccardo & Fierro, Angelo, 2018. "Carbon footprint and fossil energy consumption of bio-ethanol fuel production from Arundo donax L. crops on marginal lands of Southern Italy," Energy, Elsevier, vol. 150(C), pages 222-235.
    16. Xu, H. & Lee, U. & Wang, M., 2020. "Life-cycle energy use and greenhouse gas emissions of palm fatty acid distillate derived renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    19. Feng, Tong & Sun, Yuechi & Shi, Yating & Ma, Jie & Feng, Chunmei & Chen, Zhenni, 2024. "Air pollution control policies and impacts: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    20. Tong, Huanhuan & Shen, Ye & Zhang, Jingxin & Wang, Chi-Hwa & Ge, Tian Shu & Tong, Yen Wah, 2018. "A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries," Applied Energy, Elsevier, vol. 225(C), pages 1143-1157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:109:y:2017:i:c:p:565-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.