IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2051-d1383129.html
   My bibliography  Save this article

Methods and Techniques Supporting Energy and Media Savings in Maintenance of Public Transport Buses—State of the Art and Recommendations

Author

Listed:
  • Andrzej Wieczorek

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Kinga Stecuła

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Wieslaw Wes Grebski

    (Penn State Hazleton, Pennsylvania State University, 76 University Drive, Hazleton, PA 18202-8025, USA)

Abstract

In the article, the authors discussed the topic of energy and media savings in a public transport company. The article is of a review nature, referring to 100 sources, including scientific papers, books, conference proceedings, and websites. In the first part, a detailed literature review on environmental protection problems in road transport and methods of solving them was conducted. Subsequently, the authors reviewed the literature content on maintenance as a pro-environmental activity in transport companies. The great accent was paid to the problem of saving energy and media in the maintenance of public transport buses. Based on the literature and knowledge, the authors proposed the possibilities of conducting a rational method of managing the operation and maintenance of buses from the point of view of environmental protection, based on the strategy of predictive bus maintenance.

Suggested Citation

  • Andrzej Wieczorek & Kinga Stecuła & Wieslaw Wes Grebski, 2024. "Methods and Techniques Supporting Energy and Media Savings in Maintenance of Public Transport Buses—State of the Art and Recommendations," Energies, MDPI, vol. 17(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2051-:d:1383129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    2. Alvaro Espitia & Aaditya Mattoo & Nadia Rocha & Michele Ruta & Deborah Winkler, 2022. "Pandemic trade: COVID‐19, remote work and global value chains," The World Economy, Wiley Blackwell, vol. 45(2), pages 561-589, February.
    3. Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mandal, Prasenjit, 2021. "Promoting electric vehicle adoption: Who should invest in charging infrastructure?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Wentker & Matthew Greenwood & Jens Leker, 2019. "A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials," Energies, MDPI, vol. 12(3), pages 1-18, February.
    2. Bas,Maria & Fernandes,Ana Margarida & Paunov,Caroline, 2022. "How Resilient Was Trade to COVID-19 ?," Policy Research Working Paper Series 9975, The World Bank.
    3. Anca N. Iuga (Butnariu) & Vasile N. Popa & Luminița I. Popa, 2018. "Comparative Analysis of Automotive Products Regarding the Influence of Eco-Friendly Methods to Emissions’ Reduction," Energies, MDPI, vol. 12(1), pages 1-24, December.
    4. Cai, Zeen & Mo, Dong & Geng, Maosi & Tang, Wei & Chen, Xiqun Michael, 2023. "Integrating ride-sourcing with electric vehicle charging under mixed fleets and differentiated services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    5. Kozhaya, Mireille, 2022. "The double burden: The impact of school closures on labor force participation of mothers," Ruhr Economic Papers 956, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    6. Gert Berckmans & Maarten Messagie & Jelle Smekens & Noshin Omar & Lieselot Vanhaverbeke & Joeri Van Mierlo, 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," Energies, MDPI, vol. 10(9), pages 1-20, September.
    7. Khorana, Sangeeta & Escaith, Hubert & Ali, Salamat & Kumari, Sushma & Do, Quynh, 2022. "The changing contours of global value chains post-COVID: Evidence from the Commonwealth," Journal of Business Research, Elsevier, vol. 153(C), pages 75-86.
    8. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    9. José Alberto Fuinhas & Matheus Koengkan & Nuno Carlos Leitão & Chinazaekpere Nwani & Gizem Uzuner & Fatemeh Dehdar & Stefania Relva & Drielli Peyerl, 2021. "Effect of Battery Electric Vehicles on Greenhouse Gas Emissions in 29 European Union Countries," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    10. Batara Surya & Hamsina Hamsina & Ridwan Ridwan & Baharuddin Baharuddin & Firman Menne & Andi Tenri Fitriyah & Emil Salim Rasyidi, 2020. "The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-41, November.
    11. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    12. Mu, Dong & Ren, Huanyu & Wang, Chao & Yue, Xiongping & Du, Jianbang & Ghadimi, Pezhman, 2023. "Structural characteristics and disruption ripple effect in a meso-level electric vehicle Lithium-ion battery supply chain network," Resources Policy, Elsevier, vol. 80(C).
    13. George Barjoveanu & Florenta Dinita & Carmen Teodosiu, 2022. "Aging Passenger Car Fleet Structure, Dynamics, and Environmental Performance Evaluation at the Regional Level by Life Cycle Assessment," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    14. Manjunath, Archana & Gross, George, 2017. "Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs)," Energy Policy, Elsevier, vol. 102(C), pages 423-429.
    15. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    16. Tan, Bing Qing & Kang, Kai & Zhong, Ray Y., 2023. "Electric vehicle charging infrastructure investment strategy analysis: State-owned versus private parking lots," Transport Policy, Elsevier, vol. 141(C), pages 54-71.
    17. Lebastard, Laura & Matani, Marco & Serafini, Roberta, 2023. "GVC exporter performance during the COVID-19 pandemic: the role of supply bottlenecks," Working Paper Series 2766, European Central Bank.
    18. Srivastava, Abhishek & Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mateen, Arqum & Narayanamurthy, Gopalakrishnan, 2022. "Design and selection of government policies for electric vehicles adoption: A global perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    19. Jasmina Pašagić Škrinjar & Borna Abramović & Lucija Bukvić & Željko Marušić, 2020. "Managing Fuel Consumption and Emissions in the Renewed Fleet of a Transport Company," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    20. Hassan, Shady S. & Williams, Gwilym A. & Jaiswal, Amit K., 2019. "Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 590-599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2051-:d:1383129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.