IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2906-d1670003.html
   My bibliography  Save this article

Improving Energy Efficiency of Wastewater Residue Biomass Utilisation by Co-Combustion with Coal

Author

Listed:
  • Andrey Zhuikov

    (Polytechnic School, Siberian Federal University, 79, Svobodny Avenue, Krasnoyarsk 660041, Russia)

  • Tatyana Pyanykh

    (Polytechnic School, Siberian Federal University, 79, Svobodny Avenue, Krasnoyarsk 660041, Russia)

  • Mikhail Kolosov

    (Polytechnic School, Siberian Federal University, 79, Svobodny Avenue, Krasnoyarsk 660041, Russia)

  • Irina Grishina

    (Polytechnic School, Siberian Federal University, 79, Svobodny Avenue, Krasnoyarsk 660041, Russia)

  • Yana Zhuikova

    (Research School of High-Energy Physics, National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk 634050, Russia)

  • Petr Kuznetsov

    (Polytechnic School, Siberian Federal University, 79, Svobodny Avenue, Krasnoyarsk 660041, Russia
    Institute of Chemistry and Chemical Technology, Siberian Branch of RAS, 50/24, Akademgorodok, Krasnoyarsk 660036, Russia)

  • Stanislav Chicherin

    (Thermo and Fluid Dynamics (FLOW), Faculty of Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB) and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)

Abstract

The accelerated urbanisation that is occurring in many regions of the world is resulting in a corresponding increase in the volume of sewage sludge. This sludge is then stored in specialised landfills, the area of which is increasing annually. One of the methods of utilising this sludge is through its combustion in power plants, where it serves to generate heat. However, due to the low calorific value of sewage sludge, it is recommended to combust it in conjunction with high-calorific fuel. To improve energy efficiency of sewage residue biomass utilisation by co-combustion with coal, it is necessary to determine the main combustion parameters and mass fraction in the mixture. The objective of this study is to estimate the primary parameters of combustion of sewage sludge and coal by employing the synchronous thermal analysis method, in addition to determining the concentrations of gaseous substances formed during the combustion process. A comprehensive technical and elemental analysis of the fuels was conducted, and their thermal properties were thoroughly determined. The inorganic residue from sewage sludge combustion was analysed by scanning electron microscopy for the content of trace elements and basic oxides. Thermogravimetric analysis (TGA) of fuels was conducted in an oxidising medium, utilising a 6 mg suspension with a heating rate of 20 °C/min. The profiles of TG, DTG, and DSC curves were then utilised to determine the ignition and burnout temperatures, maximum mass loss rate, combustion index, and synergistic effects. The mixture of coal with 25% sewage sludge was found to have the most energy-efficient performance compared to other mixtures, with a 3% reduction in ignition temperature compared to coal. Concentrations of carbon dioxide, carbon monoxide, nitrogen oxides, and sulphur oxides were also determined.

Suggested Citation

  • Andrey Zhuikov & Tatyana Pyanykh & Mikhail Kolosov & Irina Grishina & Yana Zhuikova & Petr Kuznetsov & Stanislav Chicherin, 2025. "Improving Energy Efficiency of Wastewater Residue Biomass Utilisation by Co-Combustion with Coal," Energies, MDPI, vol. 18(11), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2906-:d:1670003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ni, Zhanshi & Liu, Xiang & Shi, Hao & Tian, Junjian & Yao, Yurou & Hu, Peng & He, Liqun & Meng, Kesheng & Lin, Qizhao, 2024. "Interaction mechanism and pollutant emission characteristics of sewage sludge and corncob co-combustion," Renewable Energy, Elsevier, vol. 231(C).
    2. Stanislav Chicherin & Andrey Zhuikov & Petr Kuznetsov, 2024. "The Return of Coal-Fired Combined Heat and Power Plants: Feasibility and Environmental Assessment in the Case of Conversion to Another Fuel or Modernizing an Exhaust System," Sustainability, MDPI, vol. 16(5), pages 1-15, February.
    3. Appiah-Otoo, Isaac & Chen, Xudong & Ampah, Jeffrey Dankwa, 2023. "Exploring the moderating role of foreign direct investment in the renewable energy and economic growth nexus: Evidence from West Africa," Energy, Elsevier, vol. 281(C).
    4. Raza, Mohsin & Abu-Jdayil, Basim & Al-Marzouqi, Ali H. & Inayat, Abrar, 2022. "Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 183(C), pages 67-77.
    5. Bisen, Divya & Chouhan, Ashish Pratap Singh & Pant, Manish & Chakma, Sankar, 2025. "Advancement of thermochemical conversion and the potential of biomasses for production of clean energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    6. Zhu, Guangyue & Wen, Chang & Liu, Tianyu & Xu, Minghou & Ling, Peipei & Wen, Wuhao & Li, Ruonan, 2024. "Combustion and co-combustion of biochar: Combustion performance and pollutant emissions," Applied Energy, Elsevier, vol. 376(PA).
    7. Nadziakiewicz, Jan & Koziol, Michal, 2003. "Co-combustion of sludge with coal," Applied Energy, Elsevier, vol. 75(3-4), pages 239-248, July.
    8. Ling, Jester Lih Jie & Yang, Won & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2023. "A comparative review on advanced biomass oxygen fuel combustion technologies for carbon capture and storage," Energy, Elsevier, vol. 284(C).
    9. Qin, Shuning & He, Xuefu & Li, Zikuo & Jia, Li & Qiao, Xiaolei & Chang, Xinyue & Cheng, Peng & Jin, Yan, 2025. "Co-combustion of sewage sludge and high ash coal: Thermal behavior, ash formation behavior, interaction mechanisms and economic analysis," Energy, Elsevier, vol. 323(C).
    10. Ni, Zhanshi & Zhang, Yaokun & Liu, Xiang & Shi, Hao & Yao, Yurou & Tian, Junjian & Hu, Peng & He, Liqun & Lin, Qizhao & Meng, Kesheng, 2024. "Effect of furnace temperature and oxygen concentration on combustion and CO/NO emission characteristics of sewage sludge," Renewable Energy, Elsevier, vol. 234(C).
    11. Xia, Chunxun & Balsalobre-Lorente, Daniel & Raza Syed, Qasim, 2025. "Electricity generation from renewable and non-renewable energy sources in China: The role of environmental policy stringency, FDI, and economic growth," Energy, Elsevier, vol. 318(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Zhuikov & Tatyana Pyanykh & Irina Grishina & Stanislav Chicherin & Yana Zhuikova, 2025. "Research on Co-Combustion of High-Calorific Biomass Obtained Using Gasification and Lignite for Sustainable Utilisation of Resources," Sustainability, MDPI, vol. 17(7), pages 1-18, March.
    2. Liu, Taishan & Hao, Rongjiang & Zhang, Xinyang & Xu, Xiaohu & Deng, Shuang & Ding, Guangchao & Li, Songgeng, 2025. "Insight into characteristics and mechanism of CaO-enhanced municipal sewage sludge decoupled combustion for pollutant emissions control," Renewable Energy, Elsevier, vol. 244(C).
    3. Wang, Lili & Pang, Jun, 2025. "Assessing the impact of climate mitigation technology and environmental tax on renewable energy development: A dynamic threshold approach," Renewable Energy, Elsevier, vol. 244(C).
    4. Xia, Chunxun & Balsalobre-Lorente, Daniel & Raza Syed, Qasim, 2025. "Electricity generation from renewable and non-renewable energy sources in China: The role of environmental policy stringency, FDI, and economic growth," Energy, Elsevier, vol. 318(C).
    5. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    6. Di Liang & Yimin Li & Zhongning Zhou, 2022. "Numerical Study of Thermochemistry and Trace Element Behavior during the Co-Combustion of Coal and Sludge in Boiler," Energies, MDPI, vol. 15(3), pages 1-16, January.
    7. Wang, Shanyong & Ma, Ling, 2024. "Fiscal decentralisation and renewable energy development: Inhibition or promotion?," Energy, Elsevier, vol. 311(C).
    8. Andrey Zhuikov & Lily Irtyugo & Alexander Samoilo & Yana Zhuikova & Irina Grishina & Tatyana Pyanykh & Stanislav Chicherin, 2024. "Advanced Fuel Based on Semi-Coke and Cedarwood: Kinetic Characteristics and Synergetic Effects," Energies, MDPI, vol. 17(19), pages 1-22, October.
    9. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    10. Lee, Ha Eun & Ling, Jester Lih Jie & Pae, Kook Pyo & Solanki, Bhanupratap S. & Park, Han Saem & Ahn, Hyung Jun & Seo, Hae Won & Lee, See Hoon, 2024. "Comparative life cycle assessment of carbon-free ammonia as fuel for power generation based on the perspective of supply chains," Energy, Elsevier, vol. 312(C).
    11. Ozili, Peterson K, 2024. "Impact of foreign direct investment inflows on economic growth in Nigeria," MPRA Paper 122167, University Library of Munich, Germany.
    12. Han, Chengjin & Wei, Guangsheng & Zhu, Rong & Cheng, Yu & Wang, Runzhe & Wu, Wenhe & Wang, Yefeng, 2023. "Characterization and kinetics of iron oxide reduction by corn straw biochar prepared by pyrolysis using superheated steam atmosphere and hydrothermal processes," Renewable Energy, Elsevier, vol. 219(P2).
    13. Sara Maen Asaad & Abrar Inayat & Farrukh Jamil & Chaouki Ghenai & Abdallah Shanableh, 2023. "Optimization of Biodiesel Production from Waste Cooking Oil Using a Green Catalyst Prepared from Glass Waste and Animal Bones," Energies, MDPI, vol. 16(5), pages 1-13, February.
    14. Sher, Farooq & Hameed, Saman & Omerbegović, Narcisa Smječanin & Wang, Bohong & Hai, Irfan Ul & Rashid, Tazien & Teoh, Yew Heng & Yildiz, Magdalena Joka, 2025. "Bioenergy with carbon capture and storage technology to achieve net zero emissions–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    15. Muhammad Suhrab & Atta Ullah & Chen Pinglu & Magdalena Radulescu, 2025. "Boosting green energy: impact of financial development, foreign direct investment, and inflation on sustainable energy productivity in China–Pakistan economic corridor (CPEC) countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(2), pages 4659-4682, February.
    16. Lee, Chien-Chiang & Yan, Jingyang & Xuan, Chengnan, 2025. "Blessing or curse? The effect of population aging on renewable energy," Energy, Elsevier, vol. 320(C).
    17. Jia, Shanghui & Chen, Xinhui & Jin, Jiayu, 2024. "Digital disruption and energy efficiency: The impact of regional digitalization on China's industrial sector," Energy, Elsevier, vol. 300(C).
    18. Piotr Sakiewicz & Krzysztof Piotrowski & Mariola Rajca & Izabella Maj & Sylwester Kalisz & Józef Ober & Janusz Karwot & Krishna R. Pagilla, 2022. "Innovative Technological Approach for the Cyclic Nutrients Adsorption by Post-Digestion Sewage Sludge-Based Ash Co-Formed with Some Nanostructural Additives under a Circular Economy Framework," IJERPH, MDPI, vol. 19(17), pages 1-28, September.
    19. Hao, Runlong & Zhang, Zili & Zeng, Qinda & Mao, Yumin & He, Hongzhou & Mao, Xingzhou & Yang, Fan & Zhao, Yi, 2018. "Synergistic behaviors of anthracite and dried sawdust sludge during their co-combustion: Conversion ratio, micromorphology variation and constituents evolutions," Energy, Elsevier, vol. 153(C), pages 776-787.
    20. Abdel-Mohsen O. Mohamed & Dina Mohamed & Adham Fayad & Moza T. Al Nahyan, 2025. "Environmental Management and Decarbonization Nexus: A Pathway to the Energy Sector’s Sustainable Futures," World, MDPI, vol. 6(1), pages 1-39, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2906-:d:1670003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.