IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p2845-d1618538.html
   My bibliography  Save this article

Research on Co-Combustion of High-Calorific Biomass Obtained Using Gasification and Lignite for Sustainable Utilisation of Resources

Author

Listed:
  • Andrey Zhuikov

    (Polytechnic School, Siberian Federal University, 79, Svobodny Avenue, Krasnoyarsk 660041, Russia)

  • Tatyana Pyanykh

    (Polytechnic School, Siberian Federal University, 79, Svobodny Avenue, Krasnoyarsk 660041, Russia)

  • Irina Grishina

    (Polytechnic School, Siberian Federal University, 79, Svobodny Avenue, Krasnoyarsk 660041, Russia)

  • Stanislav Chicherin

    (Thermo and Fluid Dynamics (FLOW), Faculty of Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB) and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)

  • Yana Zhuikova

    (Research School of High-Energy Physics, National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk 634050, Russia)

Abstract

As part of the transition to low-carbon energy and for the sustainable utilisation of resources, it is necessary to seek a replacement for solid fossil fuels, but unfortunately, it is impossible to completely abandon them for various reasons at the moment, so only partial replacement with new, high-calorific, biomass-based fuels is possible. The purpose of this work is to determine the typical parameters of the co-combustion of carbonisate, coal and their mixtures, taking into account the synergetic effects influencing the combustion intensity of the mixture. Carbonisate was obtained in the process of the gasification of pinewood through the counter-blowing method at a temperature of 800–900 °C, while air was used as an oxidant. Basically, this method of gasification is used for coal in order to obtain high-calorific coke for the metallurgical industry. Also, in this study, for the first time, carbonisate was obtained from 50% pinewood and 50% lignite. The O/C and H/C ratios were determined for carbonisate. A technical and elemental analysis of the investigated fuels was carried out. A thermal analysis in oxidising medium was applied to determining the typical combustion parameters in the process of slow heating of the fuels under study. According to the results of this thermal analysis, typical heating parameters such as the ignition temperature, burnout temperature, maximum mass loss rate, combustion index, etc., were determined. It was noted that the calorific value of carbonised wood is two times higher than that of coal. The combustion index of carbonisates is 2.5–36% lower compared to that of coal. According to the results of the analysis of the interaction of the components among themselves (in the process of their joint combustion), the presence of synergetic interactions between the components was determined, which affected the change in the combustion intensity and heat release intensity. The results of this study may be useful for retrofitting coal-fired boilers to run on a mixture containing carbonisate and lignite. If carbonisate is produced from biomass, the resulting gas could be used as an energy fuel by burning it in a coal-fired boiler.

Suggested Citation

  • Andrey Zhuikov & Tatyana Pyanykh & Irina Grishina & Stanislav Chicherin & Yana Zhuikova, 2025. "Research on Co-Combustion of High-Calorific Biomass Obtained Using Gasification and Lignite for Sustainable Utilisation of Resources," Sustainability, MDPI, vol. 17(7), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:2845-:d:1618538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/2845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/2845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Cheng Heng & Liu, Hao & Parvez, Ashak M. & Wu, Tao, 2017. "A novel index for the study of synergistic effects during the co-processing of coal and biomass," Applied Energy, Elsevier, vol. 188(C), pages 215-225.
    2. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Raza, Mohsin & Abu-Jdayil, Basim & Al-Marzouqi, Ali H. & Inayat, Abrar, 2022. "Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 183(C), pages 67-77.
    4. Sofía Sampaolesi & Laura Estefanía Briand & Mario Carlos Nazareno Saparrat & María Victoria Toledo, 2023. "Potentials of Biomass Waste Valorization: Case of South America," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    5. Zhu, Guangyue & Wen, Chang & Liu, Tianyu & Xu, Minghou & Ling, Peipei & Wen, Wuhao & Li, Ruonan, 2024. "Combustion and co-combustion of biochar: Combustion performance and pollutant emissions," Applied Energy, Elsevier, vol. 376(PA).
    6. Julija Konstantinavičienė & Vlada Vitunskienė, 2023. "Definition and Classification of Potential of Forest Wood Biomass in Terms of Sustainable Development: A Review," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    7. Ling, Jester Lih Jie & Yang, Won & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2023. "A comparative review on advanced biomass oxygen fuel combustion technologies for carbon capture and storage," Energy, Elsevier, vol. 284(C).
    8. Reinhard Rauch & Jitka Hrbek & Hermann Hofbauer, 2014. "Biomass gasification for synthesis gas production and applications of the syngas," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 343-362, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    2. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    3. Donatella Barisano & Giuseppe Canneto & Francesco Nanna & Antonio Villone & Emanuele Fanelli & Cesare Freda & Massimiliano Grieco & Andrea Lotierzo & Giacinto Cornacchia & Giacobbe Braccio & Vera Marc, 2022. "Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II," Energies, MDPI, vol. 15(13), pages 1-16, June.
    4. Stolecka, Katarzyna & Rusin, Andrzej, 2020. "Analysis of hazards related to syngas production and transport," Renewable Energy, Elsevier, vol. 146(C), pages 2535-2555.
    5. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    6. Emanuele Di Bisceglie & Alessandro Antonio Papa & Armando Vitale & Umberto Pasqual Laverdura & Andrea Di Carlo & Enrico Bocci, 2025. "Optimization of Biomass to Bio-Syntetic Natural Gas Production: Modeling and Assessment of the AIRE Project Plant Concept," Energies, MDPI, vol. 18(3), pages 1-23, February.
    7. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    8. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    9. Ferfari, Oussama & Belaadi, Ahmed & Bourchak, Mostefa & Ghernaout, Djamel & Ajaj, Rafic M. & Chai, Boon Xian, 2024. "Thermal decomposition of Syagrus romanzoffiana palm fibers: Thermodynamic and kinetic studies using the coats-redfern method," Renewable Energy, Elsevier, vol. 231(C).
    10. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    11. Kuba, Matthias & Kraft, Stephan & Kirnbauer, Friedrich & Maierhans, Frank & Hofbauer, Hermann, 2018. "Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass," Applied Energy, Elsevier, vol. 210(C), pages 230-240.
    12. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    13. Huang, Junxuan & Liao, Yanfen & Lin, Jianhua & Dou, Changjiang & Huang, Zengxiu & Yu, Xiongwei & Yu, Zhaosheng & Chen, Chunxiang & Ma, Xiaoqian, 2024. "Numerical simulation of the co-firing of pulverized coal and eucalyptus wood in a 1000MWth opposed wall-fired boiler," Energy, Elsevier, vol. 298(C).
    14. Konstantinos Chandolias & Enise Pekgenc & Mohammad J. Taherzadeh, 2019. "Floating Membrane Bioreactors with High Gas Hold-Up for Syngas-to-Biomethane Conversion," Energies, MDPI, vol. 12(6), pages 1-14, March.
    15. Benedikt, Florian & Kuba, Matthias & Schmid, Johannes Christian & Müller, Stefan & Hofbauer, Hermann, 2019. "Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction," Applied Energy, Elsevier, vol. 238(C), pages 1138-1149.
    16. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    17. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    18. Giuntini, Lorenzo & Lamioni, Rachele & Linari, Luca & Saccomano, Pietro & Mainardi, Davide & Tognotti, Leonardo & Galletti, Chiara, 2022. "Decarbonization of a tissue paper plant: Advanced numerical simulations to assess the replacement of fossil fuels with a biomass-derived syngas," Renewable Energy, Elsevier, vol. 198(C), pages 884-893.
    19. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    20. Abdul Rahim Shaikh & Qinhui Wang & Long Han & Yi Feng & Zohaib Sharif & Zhixin Li & Jianmeng Cen & Sunel Kumar, 2022. "Techno-Economic Analysis of Hydrogen and Electricity Production by Biomass Calcium Looping Gasification," Sustainability, MDPI, vol. 14(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:2845-:d:1618538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.