IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2804-d1666174.html
   My bibliography  Save this article

Exergy Analysis of a Biogas Plant for Municipal Solid Waste Treatment and Energy Cogeneration

Author

Listed:
  • Joana Prisco Pinheiro

    (Institute of Energy and Environment, University of São Paulo, Prof. Luciano Gualberto Avenue 1289, São Paulo 05508-900, Brazil
    These authors contributed equally to this work.)

  • Priscila Rosseto Camiloti

    (Institute of Energy and Environment, University of São Paulo, Prof. Luciano Gualberto Avenue 1289, São Paulo 05508-900, Brazil
    These authors contributed equally to this work.)

  • Ildo Luis Sauer

    (Institute of Energy and Environment, University of São Paulo, Prof. Luciano Gualberto Avenue 1289, São Paulo 05508-900, Brazil
    These authors contributed equally to this work.)

  • Carlos Eduardo Keutenedjian Mady

    (Institute of Energy and Environment, University of São Paulo, Prof. Luciano Gualberto Avenue 1289, São Paulo 05508-900, Brazil
    These authors contributed equally to this work.)

Abstract

The amount of municipal solid waste (MSW) produced has increased with population growth and consumption patterns. Currently, most waste goes to dumps, although the Brazilian law requires the final destination to be landfills. The latter does not consider the energy lost by these solutions and the carbon footprint that better destinations could avoid. However, not treating the waste correctly aggravates land availability problems, especially in large cities such as São Paulo. Anaerobic digestion is an alternative to traditional waste management, and in addition to treating residues, it generates energy and recovers the nutrients present in MSW. Thermodynamic analyses are still scarce in the literature despite being a known process. This study performed an exergy analysis of an existing biogas plant at the Institute of Energy and Environment of the University of São Paulo with a processing capacity of 20 tons of MSW per day composed of three reactors (430 m 3 each) and one internal combustion engine (ICE) of 75 kW. The plant uses MSW as the substrate for anaerobic digestion and generates electrical energy, biogas, and fertilizer for agriculture (digestate). Additionally, the plant operates in cogeneration, as the anaerobic digestion reactor uses the heat produced to generate electrical energy. The results showed that the exergy present in the substrate is 67,320 MJ/day. The products’ exergy flows and the processes’ efficiencies show that the exergy flow of the biogas (44,488 MJ/day) is significantly higher than the exergy flow of the digestate (1455 MJ/day). When considering the cogeneration process, the exergy flow was similar for heat and electric energy as the final products, with 10,987 MJ/day for electric energy and 5215 MJ/day for electric energy. The exergy efficiency of the digestion process was 68.25%, while that of cogeneration (digestate, heat and electric energy) was 26.23%. These results can help identify inefficiencies and optimize processes in an anaerobic digestion plant. Furthermore, thermodynamic analyses of anaerobic digestion found in the literature are mostly based on theoretical models. Thus, this study fills a gap regarding exergy analysis of actual biogas plants.

Suggested Citation

  • Joana Prisco Pinheiro & Priscila Rosseto Camiloti & Ildo Luis Sauer & Carlos Eduardo Keutenedjian Mady, 2025. "Exergy Analysis of a Biogas Plant for Municipal Solid Waste Treatment and Energy Cogeneration," Energies, MDPI, vol. 18(11), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2804-:d:1666174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Sulewski & Wiktor Ignaciuk & Magdalena Szymańska & Adam Wąs, 2023. "Development of the Biomethane Market in Europe," Energies, MDPI, vol. 16(4), pages 1-34, February.
    2. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    3. KeChrist Obileke & Nwabunwanne Nwokolo & Golden Makaka & Patrick Mukumba & Helen Onyeaka, 2021. "Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review," Energy & Environment, , vol. 32(2), pages 191-225, March.
    4. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Brizi, Federico & Silveira, Jose Luz & Desideri, Umberto & Reis, Joaquim Antonio dos & Tuna, Celso Eduardo & Lamas, Wendell de Queiroz, 2014. "Energetic and economic analysis of a Brazilian compact cogeneration system: Comparison between natural gas and biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 193-211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Małgorzata Pawłowska & Magdalena Zdeb & Marta Bis & Lucjan Pawłowski, 2025. "State and Perspectives of Biomethane Production and Use—A Systematic Review," Energies, MDPI, vol. 18(10), pages 1-43, May.
    2. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    3. Kim, Dohee & Kim, Taehyun & Kim, Yungeon & Park, Jinwoo, 2025. "Integration of biomass gasification and water electrolysis: Importance of sweep gas selection," Applied Energy, Elsevier, vol. 393(C).
    4. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    5. Elena C. Prenovitz & Peter K. Hazlett & Chandler S. Reilly, 2023. "Can Markets Improve Recycling Performance? A Cross-Country Regression Analysis and Case Studies," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    6. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    7. Kim, Yungeon & Kim, Taehyun & Lee, Inkyu & Park, Jinwoo, 2025. "Liquid air energy storage system with oxy-fuel combustion for clean energy supply: Comprehensive energy solutions for power, heating, cooling, and carbon capture," Applied Energy, Elsevier, vol. 379(C).
    8. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    9. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    10. Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
    11. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    12. Sogut, M. Ziya & Seçgin, Ömer & Ozkaynak, Süleyman, 2019. "Investigation of thermodynamics performance of alternative jet fuels based on decreasing threat of paraffinic and sulfur," Energy, Elsevier, vol. 181(C), pages 1114-1120.
    13. Costantini, Michele & Provolo, Giorgio & Bacenetti, Jacopo, 2024. "The effects of incorporating renewable energy into the environmental footprint of beef production," Energy, Elsevier, vol. 289(C).
    14. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    15. Chen, Jianjun & Lam, Hon Loong & Qian, Yu & Yang, Siyu, 2021. "Combined energy consumption and CO2 capture management: Improved acid gas removal process integrated with CO2 liquefaction," Energy, Elsevier, vol. 215(PA).
    16. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    17. Dong, Weijie & He, Guoqing & Cui, Quansheng & Sun, Wenwen & Hu, Zhenlong & Ahli raad, Erfan, 2022. "Self-scheduling of a novel hybrid GTSOFC unit in day-ahead energy and spinning reserve markets within ancillary services using a novel energy storage," Energy, Elsevier, vol. 239(PE).
    18. Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
    19. Xiong, Shanshan & He, Jiang & Yang, Zhongqing & Guo, Mingnv & Yan, Yunfei & Ran, Jingyu, 2020. "Thermodynamic analysis of CaO enhanced steam gasification process of food waste with high moisture and low moisture," Energy, Elsevier, vol. 194(C).
    20. Zhang, Luyao & Wang, Xueke & Abed, Azher M. & Yin, Hengbin & Abdullaev, Sherzod & Fouad, Yasser & Dahari, Mahidzal & Mahariq, Ibrahim, 2024. "Economic/sustainability optimization/analysis of an environmentally friendly trigeneration biomass gasification system using advanced machine learning," Energy, Elsevier, vol. 308(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2804-:d:1666174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.