IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2786-d1665482.html
   My bibliography  Save this article

Practical Validation of nearZEB Residential Power Supply Model with Renewable Electricity Brought into the Building Using Electric Vehicles (via V2G) Instead of the Distribution Network

Author

Listed:
  • Jacek A. Biskupski

    (Institute of Fluid-Flow Machinery Polish Academy of Sciences, 80-231 Gdańsk, Poland)

Abstract

This article attempts to estimate the potential of supplying a residential building in Europe with energy exclusively from RESs during a whole year, including the heating period. The aim of the tests carried out was to minimize the purchase of energy required to achieve the thermal comfort (HVACR + DHW) of a residential building powered solely by electricity. During the tests carried out, the EVs were used by the residents as their daily means of transport, topped up during working hours, and the excess energy remaining in their batteries was discharged into the building when they returned home. Energy for the EVs/PHEVs was sourced from RESs (mostly for free) while they were parked at the workplace, and also on the way home. Two one-month tests in the spring and autumn resulted in a state where, instead of purchasing a significant volume of black energy from the grid, the building was mostly powered by green energy from roof-top PVs and RES energy brought in by the PHEVs/EVs. This study identified days when the building became a real nZEB, which was not possible in previous years. The results of economic gains and carbon footprint reduction were calculated. After a period of testing, the degree of degradation of traction batteries used to carry the energy of EVs/PHEVs was checked. A high potential for such an operation was identified, especially in areas where there are periodic shutdowns (due to a call from the grid operator) of local RESs situated near the residential areas. The proposed solution may be of interest to all countries where the use of grid energy is associated not only with a doubling of costs (grid charges), but also with significant emissions, particularly in the heating period (e.g., Poland).

Suggested Citation

  • Jacek A. Biskupski, 2025. "Practical Validation of nearZEB Residential Power Supply Model with Renewable Electricity Brought into the Building Using Electric Vehicles (via V2G) Instead of the Distribution Network," Energies, MDPI, vol. 18(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2786-:d:1665482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vidya Krishnan Mololoth & Saguna Saguna & Christer Åhlund, 2023. "Blockchain and Machine Learning for Future Smart Grids: A Review," Energies, MDPI, vol. 16(1), pages 1-39, January.
    2. Muchun Wan & Heyang Yu & Yingning Huo & Kan Yu & Quanyuan Jiang & Guangchao Geng, 2024. "Feasibility and Challenges for Vehicle-to-Grid in Electricity Market: A Review," Energies, MDPI, vol. 17(3), pages 1-23, January.
    3. Signer, Tim & Baumgartner, Nora & Ruppert, Manuel & Sandmeier, Thorben & Fichtner, Wolf, 2024. "Modeling V2G spot market trading: The impact of charging tariffs on economic viability," Energy Policy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengquan Zhang & Hiroshi Kitamura & Mika Goto, 2025. "A New Framework of Vehicle-to-Grid Economic Evaluation: From Semi-Systematic Review of 132 Prior Studies," Energies, MDPI, vol. 18(12), pages 1-54, June.
    2. Zhang, Chengquan & Kitamura, Hiroshi & Goto, Mika, 2024. "Feasibility of vehicle-to-grid (V2G) implementation in Japan: A regional analysis of the electricity supply and demand adjustment market," Energy, Elsevier, vol. 311(C).
    3. Daniel Sousa-Dias & Daniel Amyot & Ashkan Rahimi-Kian & John Mylopoulos, 2023. "A Review of Cybersecurity Concerns for Transactive Energy Markets," Energies, MDPI, vol. 16(13), pages 1-32, June.
    4. Vitor Monteiro & Joao L. Afonso, 2023. "The Future of Electrical Power Grids: A Direction Rooted in Power Electronics," Energies, MDPI, vol. 16(13), pages 1-10, June.
    5. Wenbing Zhao & Quan Qi & Jiong Zhou & Xiong Luo, 2023. "Blockchain-Based Applications for Smart Grids: An Umbrella Review," Energies, MDPI, vol. 16(17), pages 1-35, August.
    6. Peter, Nirma & Gupta, Pankaj & Goel, Nidhi, 2025. "Intelligent strategies for microgrid protection: A comprehensive review," Applied Energy, Elsevier, vol. 379(C).
    7. Salvatore Micari & Giuseppe Napoli, 2024. "Electric Vehicles for a Flexible Energy System: Challenges and Opportunities," Energies, MDPI, vol. 17(22), pages 1-26, November.
    8. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.
    9. Coelho, Francisco C.R. & Assis, Fernando A. & Castro, José Filho C. & Donadon, Antonio R. & Roncolatto, Ronaldo A. & Andrade, Vittoria E.M.S. & Rosas, Pedro A.C. & Barcelos, Silvangela L.S.L. & Saaved, 2025. "Monte Carlo simulation of community microgrid operation: Business prospects in the Brazilian regulatory framework," Utilities Policy, Elsevier, vol. 92(C).
    10. Tehseen Mazhar & Hafiz Muhammad Irfan & Sunawar Khan & Inayatul Haq & Inam Ullah & Muhammad Iqbal & Habib Hamam, 2023. "Analysis of Cyber Security Attacks and Its Solutions for the Smart grid Using Machine Learning and Blockchain Methods," Future Internet, MDPI, vol. 15(2), pages 1-37, February.
    11. Sagar Hossain & Md. Rokonuzzaman & Kazi Sajedur Rahman & A. K. M. Ahasan Habib & Wen-Shan Tan & Md Mahmud & Shahariar Chowdhury & Sittiporn Channumsin, 2023. "Grid-Vehicle-Grid (G2V2G) Efficient Power Transmission: An Overview of Concept, Operations, Benefits, Concerns, and Future Challenges," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    12. Qian Wang & Xiaolong Yang & Xiaoyu Yu & Jingwen Yun & Jinbo Zhang, 2023. "Electric Vehicle Participation in Regional Grid Demand Response: Potential Analysis Model and Architecture Planning," Sustainability, MDPI, vol. 15(3), pages 1-22, February.
    13. Andersen, Daniel & Powell, Siobhan, 2025. "Policy and pricing tools to incentivize distributed electric vehicle-to-grid charging control," Energy Policy, Elsevier, vol. 198(C).
    14. Chen, Ching-Fu & Lai, Ching-Ming, 2024. "Understanding the acceptance of vehicle-to-grid (V2G) services: Evidence from Taiwan," Transport Policy, Elsevier, vol. 159(C), pages 230-240.
    15. Huo, Yingning & Xing, Haowei & Yang, Yi & Yu, Heyang & Wan, Muchun & Geng, Guangchao & Jiang, Quanyuan, 2025. "Real-time estimation of aggregated electric vehicle charging load based on representative meter data," Energy, Elsevier, vol. 321(C).
    16. Sabadini, Felipe & Madlener, Reinhard, 2025. "Does taxation hamper the vehicle-to-grid business case? Empirical evidence from Germany," Applied Energy, Elsevier, vol. 381(C).
    17. Mikołaj Gwiazdowicz & Marek Natkaniec, 2023. "Feature Selection and Model Evaluation for Threat Detection in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-25, June.
    18. Casey Watters, 2023. "When Criminals Abuse the Blockchain: Establishing Personal Jurisdiction in a Decentralised Environment," Laws, MDPI, vol. 12(2), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2786-:d:1665482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.