IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2630-d1659560.html
   My bibliography  Save this article

Enhancing Fairness and Efficiency in PV Energy Curtailment: The Role of East–West-Facing Bifacial Installations in Radial Distribution Networks

Author

Listed:
  • Francis Maina Itote

    (Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan)

  • Ryuto Shigenobu

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan)

  • Akiko Takahashi

    (Faculty of Basic and Generic Researches, University of Fukui, Fukui 910-8507, Japan)

  • Masakazu Ito

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan)

  • Ghjuvan Antone Faggianelli

    (Science for Environment Laboratory, CNRS UMR SPE 6134, University of Corsica, 20000 Ajaccio, France)

Abstract

Electricity market reforms and decreasing technology costs have propelled residential solar PV growth leading distribution network operators to face operational challenges including reverse power flows and voltage regulation during peak solar generation. Traditional mono-facial south-facing PV systems concentrate production at midday when demand may be low, leading to high curtailment, especially for downstream households. This study proposes vertically installed east–west-facing bifacial PV systems (BiE and BiW), characterized by two energy peaks (morning and evening), which are better aligned with residential demand and alleviate grid constraints. Using load flow simulations, the performance of vertical bifacial configurations was compared against mono-facial systems across PV capacities from 1 to 20 kW. Fairness in curtailment was evaluated at 10 kW using Jain’s fairness index, the Gini index, and the Curtailment index. Simulation results show that BiE and BiW installations, especially at higher capacities, not only generate more energy but also are better at managing curtailment. At 10 kW, BiE and BiW increased bid energies by 815 kWh and 787 kWh, and reduced curtailed energy by 1566 kWh and 1499 kWh, respectively. These findings highlight the potential of bifacial PV installations in mitigating curtailment and improving fairness in energy distribution, supporting the demand for residential PV systems.

Suggested Citation

  • Francis Maina Itote & Ryuto Shigenobu & Akiko Takahashi & Masakazu Ito & Ghjuvan Antone Faggianelli, 2025. "Enhancing Fairness and Efficiency in PV Energy Curtailment: The Role of East–West-Facing Bifacial Installations in Radial Distribution Networks," Energies, MDPI, vol. 18(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2630-:d:1659560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gebbran, Daniel & Mhanna, Sleiman & Ma, Yiju & Chapman, Archie C. & Verbič, Gregor, 2021. "Fair coordination of distributed energy resources with Volt-Var control and PV curtailment," Applied Energy, Elsevier, vol. 286(C).
    2. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Ammar Hamoud Ahmad Dehwah & Muhammad Asif & Ismail Mohammad Budaiwi & Adel Alshibani, 2020. "Techno-Economic Assessment of Rooftop PV Systems in Residential Buildings in Hot–Humid Climates," Sustainability, MDPI, vol. 12(23), pages 1-19, December.
    4. Sharma, Vanika & Aziz, Syed Mahfuzul & Haque, Mohammed H. & Kauschke, Travis, 2020. "Effects of high solar photovoltaic penetration on distribution feeders and the economic impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. O'Shaughnessy, Eric & Cruce, Jesse & Xu, Kaifeng, 2021. "Rethinking solar PV contracts in a world of increasing curtailment risk," Energy Economics, Elsevier, vol. 98(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    2. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    3. Newbery, David M. & Biggar, Darryl R., 2024. "Marginal curtailment of wind and solar PV: Transmission constraints, pricing and access regimes for efficient investment," Energy Policy, Elsevier, vol. 191(C).
    4. Davi-Arderius, Daniel & Jamasb, Tooraj, 2024. "Measuring a Paradox: Zero-negative Electricity Prices," Working Papers 13-2024, Copenhagen Business School, Department of Economics.
    5. Ma, Yiju & Chapman, Archie C. & Verbič, Gregor, 2022. "Valuation of compound real options for co-investment in residential battery systems," Applied Energy, Elsevier, vol. 318(C).
    6. Piotr Kacejko & Paweł Pijarski, 2021. "Optimal Voltage Control in MV Network with Distributed Generation," Energies, MDPI, vol. 14(2), pages 1-19, January.
    7. Ritchie, M.J. & Engelbrecht, J.A.A. & Booysen, M.J., 2024. "Loadshedding-induced transients due to battery backup systems and electric water heaters," Applied Energy, Elsevier, vol. 367(C).
    8. Abhnil Amtesh Prasad & Merlinde Kay, 2021. "Prediction of Solar Power Using Near-Real Time Satellite Data," Energies, MDPI, vol. 14(18), pages 1-20, September.
    9. Thunchanok Kaewnukultorn & Sergio Basilio Sepúlveda-Mora & Ryan Purnell & Steven Hegedus, 2024. "Electrical and Financial Impacts of Inverter Clipping on Oversized Bifacial Photovoltaic Systems," Energies, MDPI, vol. 17(22), pages 1-18, November.
    10. Khezri, Rahmat & Mahmoudi, Amin & Whaley, David, 2022. "Optimal sizing and comparative analysis of rooftop PV and battery for grid-connected households with all-electric and gas-electricity utility," Energy, Elsevier, vol. 251(C).
    11. Gallego, Camilo A., 2022. "Intertemporal effects of imperfect competition through forward contracts in wholesale electricity markets," Energy Economics, Elsevier, vol. 107(C).
    12. Soares, João & Lezama, Fernando & Faia, Ricardo & Limmer, Steffen & Dietrich, Manuel & Rodemann, Tobias & Ramos, Sergio & Vale, Zita, 2024. "Review on fairness in local energy systems," Applied Energy, Elsevier, vol. 374(C).
    13. Seung-Min Lee & Eui-Chan Lee & Jung-Hun Lee & Sun-Ho Yu & Jae-Sil Heo & Woo-Young Lee & Bong-Suck Kim, 2023. "Analysis of the Output Characteristics of a Vertical Photovoltaic System Based on Operational Data: A Case Study in Republic of Korea," Energies, MDPI, vol. 16(19), pages 1-14, October.
    14. Prabawa, Panggah & Choi, Dae-Hyun, 2024. "Safe deep reinforcement learning-assisted two-stage energy management for active power distribution networks with hydrogen fueling stations," Applied Energy, Elsevier, vol. 375(C).
    15. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    16. Zhong, Jianmei & Zhang, Wei & Xie, Lingzhi & Zhao, Oufan & Wu, Xin & Zeng, Xiding & Guo, Jiahong, 2023. "Development and challenges of bifacial photovoltaic technology and application in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    17. Xincheng Pan & Rahmat Khezri & Amin Mahmoudi & Amirmehdi Yazdani & GM Shafiullah, 2021. "Energy Management Systems for Grid-Connected Houses with Solar PV and Battery by Considering Flat and Time-of-Use Electricity Rates," Energies, MDPI, vol. 14(16), pages 1-21, August.
    18. Jamil, Uzair & Hickey, Thomas & Pearce, Joshua M., 2024. "Solar energy modelling and proposed crops for different types of agrivoltaics systems," Energy, Elsevier, vol. 304(C).
    19. Lonergan, Katherine Emma & Suter, Nicolas & Sansavini, Giovanni, 2023. "Energy systems modelling for just transitions," Energy Policy, Elsevier, vol. 183(C).
    20. Agnieszka Bus & Michał Hasny & Edyta Hewelke & Anna Szelągowska, 2025. "The Power of Sun—A Comparative Cost–Benefit Analysis of Residential PV Systems in Poland," Sustainability, MDPI, vol. 17(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2630-:d:1659560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.