IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2630-d1659560.html
   My bibliography  Save this article

Enhancing Fairness and Efficiency in PV Energy Curtailment: The Role of East–West-Facing Bifacial Installations in Radial Distribution Networks

Author

Listed:
  • Francis Maina Itote

    (Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan)

  • Ryuto Shigenobu

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan)

  • Akiko Takahashi

    (Faculty of Basic and Generic Researches, University of Fukui, Fukui 910-8507, Japan)

  • Masakazu Ito

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan)

  • Ghjuvan Antone Faggianelli

    (Science for Environment Laboratory, CNRS UMR SPE 6134, University of Corsica, 20000 Ajaccio, France)

Abstract

Electricity market reforms and decreasing technology costs have propelled residential solar PV growth leading distribution network operators to face operational challenges including reverse power flows and voltage regulation during peak solar generation. Traditional mono-facial south-facing PV systems concentrate production at midday when demand may be low, leading to high curtailment, especially for downstream households. This study proposes vertically installed east–west-facing bifacial PV systems (BiE and BiW), characterized by two energy peaks (morning and evening), which are better aligned with residential demand and alleviate grid constraints. Using load flow simulations, the performance of vertical bifacial configurations was compared against mono-facial systems across PV capacities from 1 to 20 kW. Fairness in curtailment was evaluated at 10 kW using Jain’s fairness index, the Gini index, and the Curtailment index. Simulation results show that BiE and BiW installations, especially at higher capacities, not only generate more energy but also are better at managing curtailment. At 10 kW, BiE and BiW increased bid energies by 815 kWh and 787 kWh, and reduced curtailed energy by 1566 kWh and 1499 kWh, respectively. These findings highlight the potential of bifacial PV installations in mitigating curtailment and improving fairness in energy distribution, supporting the demand for residential PV systems.

Suggested Citation

  • Francis Maina Itote & Ryuto Shigenobu & Akiko Takahashi & Masakazu Ito & Ghjuvan Antone Faggianelli, 2025. "Enhancing Fairness and Efficiency in PV Energy Curtailment: The Role of East–West-Facing Bifacial Installations in Radial Distribution Networks," Energies, MDPI, vol. 18(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2630-:d:1659560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Gebbran, Daniel & Mhanna, Sleiman & Ma, Yiju & Chapman, Archie C. & Verbič, Gregor, 2021. "Fair coordination of distributed energy resources with Volt-Var control and PV curtailment," Applied Energy, Elsevier, vol. 286(C).
    3. Ammar Hamoud Ahmad Dehwah & Muhammad Asif & Ismail Mohammad Budaiwi & Adel Alshibani, 2020. "Techno-Economic Assessment of Rooftop PV Systems in Residential Buildings in Hot–Humid Climates," Sustainability, MDPI, vol. 12(23), pages 1-19, December.
    4. Sharma, Vanika & Aziz, Syed Mahfuzul & Haque, Mohammed H. & Kauschke, Travis, 2020. "Effects of high solar photovoltaic penetration on distribution feeders and the economic impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. O'Shaughnessy, Eric & Cruce, Jesse & Xu, Kaifeng, 2021. "Rethinking solar PV contracts in a world of increasing curtailment risk," Energy Economics, Elsevier, vol. 98(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    2. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    3. Newbery, David M. & Biggar, Darryl R., 2024. "Marginal curtailment of wind and solar PV: Transmission constraints, pricing and access regimes for efficient investment," Energy Policy, Elsevier, vol. 191(C).
    4. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    5. Bosu, Issa & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Energy audit, techno-economic, and environmental assessment of integrating solar technologies for energy management in a university residential building: A case study," Applied Energy, Elsevier, vol. 341(C).
    6. Jadidi, Hossein & Firouzi, Afshin & Rastegar, Mohammad Ali & Zandi, Majid & Eicker, Ursula, 2025. "Risk mitigation in project finance for utility-scale solar PV projects," Energy Economics, Elsevier, vol. 143(C).
    7. Diogo Cabral & Abolfazl Hayati & João Gomes & Hossein Afzali Gorouh & Pouriya Nasseriyan & Mazyar Salmanzadeh, 2023. "Experimental Electrical Assessment Evaluation of a Vertical n-PERT Half-Size Bifacial Solar Cell String Receiver on a Parabolic Trough Solar Collector," Energies, MDPI, vol. 16(4), pages 1-21, February.
    8. Prakash, K. & Ali, M. & Hossain, M A & Kumar, Nallapaneni Manoj & Islam, M.R. & Macana, C.A. & Chopra, Shauhrat S. & Pota, H.R., 2022. "Planning battery energy storage system in line with grid support parameters enables circular economy aligned ancillary services in low voltage networks," Renewable Energy, Elsevier, vol. 201(P1), pages 802-820.
    9. Turmandakh Bat-Orgil & Battuvshin Bayarkhuu & Bayasgalan Dugarjav & Insu Paek, 2025. "Impact Assessment of Grid-Connected Solar Photovoltaic Systems on Power Distribution Grid: A Case Study on a Highly Loaded Feeder in Ulaanbaatar Ger District," Energies, MDPI, vol. 18(2), pages 1-17, January.
    10. Davi-Arderius, Daniel & Jamasb, Tooraj, 2024. "Measuring a Paradox: Zero-negative Electricity Prices," Working Papers 13-2024, Copenhagen Business School, Department of Economics.
    11. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    12. Manni, Mattia & Jouttijärvi, Sami & Ranta, Samuli & Miettunen, Kati & Lobaccaro, Gabriele, 2024. "Validation of model chains for global tilted irradiance on East-West vertical bifacial photovoltaics at high latitudes," Renewable Energy, Elsevier, vol. 220(C).
    13. Ma, Yiju & Chapman, Archie C. & Verbič, Gregor, 2022. "Valuation of compound real options for co-investment in residential battery systems," Applied Energy, Elsevier, vol. 318(C).
    14. Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
    15. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol, 2025. "Grid impact of photovoltaics, electric vehicles and heat pumps on distribution grids — An overview," Applied Energy, Elsevier, vol. 380(C).
    16. Piotr Kacejko & Paweł Pijarski, 2021. "Optimal Voltage Control in MV Network with Distributed Generation," Energies, MDPI, vol. 14(2), pages 1-19, January.
    17. Tahir, Muhammad Usman & Siraj, Kiran & Ali Shah, Syed Faizan & Arshad, Naveed, 2023. "Evaluation of single-phase net metering to meet renewable energy targets: A case study from Pakistan," Energy Policy, Elsevier, vol. 172(C).
    18. Ahmed, Ahsan & Siddiqui, Mubashir Ali & Ammar, Syed Muhammad, 2025. "Comprehensive energy, economic, and environmental (3E) analyses for rooftop photovoltaic integration in urban regions employing utilization factor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    19. Ritchie, M.J. & Engelbrecht, J.A.A. & Booysen, M.J., 2024. "Loadshedding-induced transients due to battery backup systems and electric water heaters," Applied Energy, Elsevier, vol. 367(C).
    20. Abhnil Amtesh Prasad & Merlinde Kay, 2021. "Prediction of Solar Power Using Near-Real Time Satellite Data," Energies, MDPI, vol. 14(18), pages 1-20, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2630-:d:1659560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.