IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6971-d1254524.html
   My bibliography  Save this article

Analysis of the Output Characteristics of a Vertical Photovoltaic System Based on Operational Data: A Case Study in Republic of Korea

Author

Listed:
  • Seung-Min Lee

    (KEPCO Research Institute, Korea Electric Power Corporation, Naju 58277, Republic of Korea)

  • Eui-Chan Lee

    (KEPCO Research Institute, Korea Electric Power Corporation, Naju 58277, Republic of Korea)

  • Jung-Hun Lee

    (KEPCO Research Institute, Korea Electric Power Corporation, Naju 58277, Republic of Korea)

  • Sun-Ho Yu

    (KEPCO Research Institute, Korea Electric Power Corporation, Naju 58277, Republic of Korea)

  • Jae-Sil Heo

    (KEPCO Research Institute, Korea Electric Power Corporation, Naju 58277, Republic of Korea)

  • Woo-Young Lee

    (Edison Electrical Engineering, Co., Seoul 04789, Republic of Korea)

  • Bong-Suck Kim

    (KEPCO Research Institute, Korea Electric Power Corporation, Naju 58277, Republic of Korea)

Abstract

The proliferation of renewable energy sources to achieve carbon neutrality has rapidly increased the adoption of photovoltaic (PV) systems. Consequently, specialized solar PV systems have emerged for various installation purposes. This study focuses on grid connecting vertically installed bifacial PV modules facing east and west by establishing a test bed within Republic of Korea. Based on weather and generation data collected in Republic of Korea, located in the middle of latitude 34.98° N, from January to July 2023, we analyzed and compared the generation patterns, peak generation, peak hours, and total generation of conventional and vertical PV systems. Moreover, PVsyst was used to model the solar PV generation and analyze the consistency and viability of vertical PV generation by comparing actual operational data with simulation results. The vertical PV system demonstrated a peak power generation of 89.1% compared with the conventional PV system with bifacial modules. Based on operational data from January to July, the power generation output of the vertical PV system decreased to 65.7% compared with that of the conventional system with bifacial modules. This corresponded to 78.8% to 80.2% based on the PVsyst simulation results. In particular, the investigations related to the peak generation levels and occurrence times of vertical PV systems provide insights into the practicality of vertical solar PV systems and their potential for improving the PV hosting capacity.

Suggested Citation

  • Seung-Min Lee & Eui-Chan Lee & Jung-Hun Lee & Sun-Ho Yu & Jae-Sil Heo & Woo-Young Lee & Bong-Suck Kim, 2023. "Analysis of the Output Characteristics of a Vertical Photovoltaic System Based on Operational Data: A Case Study in Republic of Korea," Energies, MDPI, vol. 16(19), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6971-:d:1254524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, M. Ryyan & Hanna, Amir & Sun, Xingshu & Alam, Muhammad A., 2017. "Vertical bifacial solar farms: Physics, design, and global optimization," Applied Energy, Elsevier, vol. 206(C), pages 240-248.
    2. Chudinzow, Dimitrij & Nagel, Sylvio & Güsewell, Joshua & Eltrop, Ludger, 2020. "Vertical bifacial photovoltaics – A complementary technology for the European electricity supply?," Applied Energy, Elsevier, vol. 264(C).
    3. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    4. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seungmin Lee & Euichan Lee & Junghun Lee & Seongjun Park & Wonsik Moon, 2024. "Strategy for Enhancing Hosting Capacity of Distribution Lines Using a Vertical Photovoltaic System," Energies, MDPI, vol. 17(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahimat O. Yakubu & Maame T. Ankoh & Lena D. Mensah & David A. Quansah & Muyiwa S. Adaramola, 2022. "Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region," Energies, MDPI, vol. 15(22), pages 1-17, November.
    2. Preeti Kumari Sahu & J. N. Roy & Chandan Chakraborty & Senthilarasu Sundaram, 2021. "A New Model for Estimation of Energy Extraction from Bifacial Photovoltaic Modules," Energies, MDPI, vol. 14(16), pages 1-16, August.
    3. Juhee Jang & Kyungsoo Lee, 2020. "Practical Performance Analysis of a Bifacial PV Module and System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    4. Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).
    5. Patel, M. Tahir & Khan, M. Ryyan & Sun, Xingshu & Alam, Muhammad A., 2019. "A worldwide cost-based design and optimization of tilted bifacial solar farms," Applied Energy, Elsevier, vol. 247(C), pages 467-479.
    6. Khan, M. Ryyan & Sakr, Enas & Sun, Xingshu & Bermel, Peter & Alam, Muhammad A., 2019. "Ground sculpting to enhance energy yield of vertical bifacial solar farms," Applied Energy, Elsevier, vol. 241(C), pages 592-598.
    7. Seungmin Lee & Euichan Lee & Junghun Lee & Seongjun Park & Wonsik Moon, 2024. "Strategy for Enhancing Hosting Capacity of Distribution Lines Using a Vertical Photovoltaic System," Energies, MDPI, vol. 17(6), pages 1-16, March.
    8. Patel, M. Tahir & Vijayan, Ramachandran A. & Asadpour, Reza & Varadharajaperumal, M. & Khan, M. Ryyan & Alam, Muhammad A., 2020. "Temperature-dependent energy gain of bifacial PV farms: A global perspective," Applied Energy, Elsevier, vol. 276(C).
    9. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).
    10. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    11. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Patel, M. Tahir & Asadpour, Reza & Bin Jahangir, Jabir & Ryyan Khan, M. & Alam, Muhammad A., 2023. "Current-matching erases the anticipated performance gain of next-generation two-terminal Perovskite-Si tandem solar farms," Applied Energy, Elsevier, vol. 329(C).
    13. Patel, M. Tahir & Ahmed, M. Sojib & Imran, Hassan & Butt, Nauman Z. & Khan, M. Ryyan & Alam, Muhammad A., 2021. "Global analysis of next-generation utility-scale PV: Tracking bifacial solar farms," Applied Energy, Elsevier, vol. 290(C).
    14. Kim, James Hyungkwan & Mills, Andrew D. & Wiser, Ryan & Bolinger, Mark & Gorman, Will & Crespo Montañes, Cristina & O'Shaughnessy, Eric, 2021. "Project developer options to enhance the value of solar electricity as solar and storage penetrations increase," Applied Energy, Elsevier, vol. 304(C).
    15. Arkadiusz Dobrzycki & Dariusz Kurz & Ewa Maćkowiak, 2021. "Influence of Selected Working Conditions on Electricity Generation in Bifacial Photovoltaic Modules in Polish Climatic Conditions," Energies, MDPI, vol. 14(16), pages 1-24, August.
    16. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    17. Sun, Bo & Lu, Lin & Yuan, Yanping & Ocłoń, Paweł, 2023. "Development and validation of a concise and anisotropic irradiance model for bifacial photovoltaic modules," Renewable Energy, Elsevier, vol. 209(C), pages 442-452.
    18. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    19. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    20. Manfredi Picciotto Maniscalco & Sonia Longo & Gabriele Miccichè & Maurizio Cellura & Marco Ferraro, 2023. "A Critical Review of the Environmental Performance of Bifacial Photovoltaic Panels," Energies, MDPI, vol. 17(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6971-:d:1254524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.