IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4964-d613732.html
   My bibliography  Save this article

Influence of Selected Working Conditions on Electricity Generation in Bifacial Photovoltaic Modules in Polish Climatic Conditions

Author

Listed:
  • Arkadiusz Dobrzycki

    (Institute of Electrical Engineering and Electronics, Faculty of Automatic, Robotics and Electrical Engineering, Poznan University of Technology, 60965 Poznań, Poland)

  • Dariusz Kurz

    (Institute of Electrical Engineering and Electronics, Faculty of Automatic, Robotics and Electrical Engineering, Poznan University of Technology, 60965 Poznań, Poland)

  • Ewa Maćkowiak

    (Institute of Electrical Engineering and Electronics, Faculty of Automatic, Robotics and Electrical Engineering, Poznan University of Technology, 60965 Poznań, Poland)

Abstract

This paper discusses the conversion of solar irradiance energy into electricity. Double-sided (bifacial) panels are gaining increasing popularity in commercial applications due to the increased energy yield with a constant occupied mounting surface. However, the value of the additional energy yield produced by the back of the panel depends on several important factors. This paper presents the influence of working conditions on electricity generation in bifacial modules. This paper also investigates the influence of weather conditions, the module inclination angle, and the substrate beneath the panel surface on electricity generation. Fill factor and efficiency were calculated for each case included in the study scope. Based on the current voltage, power characteristics, and calculations, the module operation for different conditions was compared. It was observed that the optimal inclination angle to the surface is higher for the bifacial modules compared to the unilateral modules. The type of surface under the module has also been indicated to impact the amount of electricity generated. The additional energy yield associated with the panels’ rear side accounts for 2% to more than 35% of the total power generated by a photovoltaic (PV) module. The unit cost of electricity generation in the analyzed cases was also determined.

Suggested Citation

  • Arkadiusz Dobrzycki & Dariusz Kurz & Ewa Maćkowiak, 2021. "Influence of Selected Working Conditions on Electricity Generation in Bifacial Photovoltaic Modules in Polish Climatic Conditions," Energies, MDPI, vol. 14(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4964-:d:613732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, M. Ryyan & Hanna, Amir & Sun, Xingshu & Alam, Muhammad A., 2017. "Vertical bifacial solar farms: Physics, design, and global optimization," Applied Energy, Elsevier, vol. 206(C), pages 240-248.
    2. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    3. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    4. Christopher Pike & Erin Whitney & Michelle Wilber & Joshua S. Stein, 2021. "Field Performance of South-Facing and East-West Facing Bifacial Modules in the Arctic," Energies, MDPI, vol. 14(4), pages 1-15, February.
    5. Radovan Kopecek & Joris Libal, 2021. "Bifacial Photovoltaics 2021: Status, Opportunities and Challenges," Energies, MDPI, vol. 14(8), pages 1-16, April.
    6. R. Kopecek & J. Libal, 2018. "Towards large-scale deployment of bifacial photovoltaics," Nature Energy, Nature, vol. 3(6), pages 443-446, June.
    7. Damian Burzyński & Robert Pietracho & Leszek Kasprzyk & Andrzej Tomczewski, 2019. "Analysis and Modeling of the Wear-Out Process of a Lithium-Nickel-Manganese-Cobalt Cell during Cycling Operation under Constant Load Conditions," Energies, MDPI, vol. 12(20), pages 1-12, October.
    8. Hyeonwook Park & Sungho Chang & Sanghwan Park & Woo Kyoung Kim, 2019. "Outdoor Performance Test of Bifacial n-Type Silicon Photovoltaic Modules," Sustainability, MDPI, vol. 11(22), pages 1-10, November.
    9. Juhee Jang & Kyungsoo Lee, 2020. "Practical Performance Analysis of a Bifacial PV Module and System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    10. Juhee Jang & Andrea Pfreundt & Max Mittag & Kyungsoo Lee, 2021. "Performance Analysis of Bifacial PV Modules with Transparent Mesh Backsheet," Energies, MDPI, vol. 14(5), pages 1-15, March.
    11. Fabio Ricco Galluzzo & Pier Enrico Zani & Marina Foti & Andrea Canino & Cosimo Gerardi & Salvatore Lombardo, 2020. "Numerical Modeling of Bifacial PV String Performance: Perimeter Effect and Influence of Uniaxial Solar Trackers," Energies, MDPI, vol. 13(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Kurz & Agata Nowak, 2023. "Analysis of the Impact of the Level of Self-Consumption of Electricity from a Prosumer Photovoltaic Installation on Its Profitability under Different Energy Billing Scenarios in Poland," Energies, MDPI, vol. 16(2), pages 1-40, January.
    2. Slawomir Gulkowski, 2022. "Specific Yield Analysis of the Rooftop PV Systems Located in South-Eastern Poland," Energies, MDPI, vol. 15(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahimat O. Yakubu & Maame T. Ankoh & Lena D. Mensah & David A. Quansah & Muyiwa S. Adaramola, 2022. "Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region," Energies, MDPI, vol. 15(22), pages 1-17, November.
    2. Bartłomiej Mroczek & Paweł Pijarski, 2021. "DSO Strategies Proposal for the LV Grid of the Future," Energies, MDPI, vol. 14(19), pages 1-19, October.
    3. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Preeti Kumari Sahu & J. N. Roy & Chandan Chakraborty & Senthilarasu Sundaram, 2021. "A New Model for Estimation of Energy Extraction from Bifacial Photovoltaic Modules," Energies, MDPI, vol. 14(16), pages 1-16, August.
    5. Juhee Jang & Kyungsoo Lee, 2020. "Practical Performance Analysis of a Bifacial PV Module and System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    6. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    7. Seung-Min Lee & Eui-Chan Lee & Jung-Hun Lee & Sun-Ho Yu & Jae-Sil Heo & Woo-Young Lee & Bong-Suck Kim, 2023. "Analysis of the Output Characteristics of a Vertical Photovoltaic System Based on Operational Data: A Case Study in Republic of Korea," Energies, MDPI, vol. 16(19), pages 1-14, October.
    8. Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).
    9. Patel, M. Tahir & Khan, M. Ryyan & Sun, Xingshu & Alam, Muhammad A., 2019. "A worldwide cost-based design and optimization of tilted bifacial solar farms," Applied Energy, Elsevier, vol. 247(C), pages 467-479.
    10. Khan, M. Ryyan & Sakr, Enas & Sun, Xingshu & Bermel, Peter & Alam, Muhammad A., 2019. "Ground sculpting to enhance energy yield of vertical bifacial solar farms," Applied Energy, Elsevier, vol. 241(C), pages 592-598.
    11. Caixia Zhang & Honglie Shen & Luanhong Sun & Jiale Yang & Shiliang Wu & Zhonglin Lu, 2020. "Bifacial p-Type PERC Solar Cell with Efficiency over 22% Using Laser Doped Selective Emitter," Energies, MDPI, vol. 13(6), pages 1-12, March.
    12. Hua, Zhengcao & Ma, Chao & Lian, Jijian & Pang, Xiulan & Yang, Weichao, 2019. "Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand," Applied Energy, Elsevier, vol. 238(C), pages 721-733.
    13. Patel, M. Tahir & Vijayan, Ramachandran A. & Asadpour, Reza & Varadharajaperumal, M. & Khan, M. Ryyan & Alam, Muhammad A., 2020. "Temperature-dependent energy gain of bifacial PV farms: A global perspective," Applied Energy, Elsevier, vol. 276(C).
    14. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).
    15. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    16. Patel, M. Tahir & Asadpour, Reza & Bin Jahangir, Jabir & Ryyan Khan, M. & Alam, Muhammad A., 2023. "Current-matching erases the anticipated performance gain of next-generation two-terminal Perovskite-Si tandem solar farms," Applied Energy, Elsevier, vol. 329(C).
    17. Patel, M. Tahir & Ahmed, M. Sojib & Imran, Hassan & Butt, Nauman Z. & Khan, M. Ryyan & Alam, Muhammad A., 2021. "Global analysis of next-generation utility-scale PV: Tracking bifacial solar farms," Applied Energy, Elsevier, vol. 290(C).
    18. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    19. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    20. Piotr Wróblewski & Mariusz Niekurzak, 2022. "Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions," Energies, MDPI, vol. 15(4), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4964-:d:613732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.