IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016920.html
   My bibliography  Save this article

An statistical model for the short-term albedo estimation applied to PV bifacial modules

Author

Listed:
  • Ortega, Eneko
  • Suarez, Sergio
  • Jimeno, Juan Carlos
  • Gutierrez, Jose Rubén
  • Fano, Vanesa
  • Otaegi, Aloña
  • Rivas, Jose Manuel
  • Navas, Gustavo
  • Fernandez, Ignacio
  • Rodriguez-Conde, Sofia

Abstract

Albedo estimation is an essential input parameter for bifacial PV modules. However, there was no clear agreement on which albedo values should be used and how they should be measured, either with satellite measurements or using onsite measurements which can be obtained from nearby meteorological stations. Since long-term measurements are not always available for new PV system locations, short-term albedo measurements are also used as input parameters in PV system performance estimation models. Short-term albedo presents high variability due to factors such as weather, seasonality or changes in the surrounding surface among others. In addition, apparently random albedo variations of 60% can be observed, even during consecutive days or within the same day. Therefore, this study presents a two-parameter exponential model that modelates the albedo data statistical distribution with an error of less than 5% in all cases and from which it is possible to determine the reliability of the obtained data. This model has been evaluated at a set of locations, with different surface types and climates, and assessed using onsite and satellite data. The impact of the methodology used to estimate the albedo data uncertainty and its reliability has also been studied as a function of several parameters such as the global horizontal irradiance and measurement time, allowing the process optimization and enhancing its reliability.

Suggested Citation

  • Ortega, Eneko & Suarez, Sergio & Jimeno, Juan Carlos & Gutierrez, Jose Rubén & Fano, Vanesa & Otaegi, Aloña & Rivas, Jose Manuel & Navas, Gustavo & Fernandez, Ignacio & Rodriguez-Conde, Sofia, 2024. "An statistical model for the short-term albedo estimation applied to PV bifacial modules," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016920
    DOI: 10.1016/j.renene.2023.119777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    2. Radovan Kopecek & Joris Libal, 2021. "Bifacial Photovoltaics 2021: Status, Opportunities and Challenges," Energies, MDPI, vol. 14(8), pages 1-16, April.
    3. Baloch, Ahmer A.B. & Hammat, Said & Figgis, Benjamin & Alharbi, Fahhad H. & Tabet, Nouar, 2020. "In-field characterization of key performance parameters for bifacial photovoltaic installation in a desert climate," Renewable Energy, Elsevier, vol. 159(C), pages 50-63.
    4. Riyad Mubarak & Martin Hofmann & Stefan Riechelmann & Gunther Seckmeyer, 2017. "Comparison of Modelled and Measured Tilted Solar Irradiance for Photovoltaic Applications," Energies, MDPI, vol. 10(11), pages 1-18, October.
    5. Li, Zhenchao & Zhao, Yanyan & Luo, Yong & Yang, Liwei & Li, Peidu & Jin, Xiao & Jiang, Junxia & Liu, Rong & Gao, Xiaoqing, 2022. "A comparative study on the surface radiation characteristics of photovoltaic power plant in the Gobi desert," Renewable Energy, Elsevier, vol. 182(C), pages 764-771.
    6. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    7. Ziar, Hesan & Sönmez, Furkan Fatih & Isabella, Olindo & Zeman, Miro, 2019. "A comprehensive albedo model for solar energy applications: Geometric spectral albedo," Applied Energy, Elsevier, vol. 255(C).
    8. Appelbaum, J., 2016. "Bifacial photovoltaic panels field," Renewable Energy, Elsevier, vol. 85(C), pages 338-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahimat O. Yakubu & Maame T. Ankoh & Lena D. Mensah & David A. Quansah & Muyiwa S. Adaramola, 2022. "Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region," Energies, MDPI, vol. 15(22), pages 1-17, November.
    2. Hayibo, Koami Soulemane & Petsiuk, Aliaksei & Mayville, Pierce & Brown, Laura & Pearce, Joshua M., 2022. "Monofacial vs bifacial solar photovoltaic systems in snowy environments," Renewable Energy, Elsevier, vol. 193(C), pages 657-668.
    3. Bartłomiej Mroczek & Paweł Pijarski, 2021. "DSO Strategies Proposal for the LV Grid of the Future," Energies, MDPI, vol. 14(19), pages 1-19, October.
    4. Arkadiusz Dobrzycki & Dariusz Kurz & Ewa Maćkowiak, 2021. "Influence of Selected Working Conditions on Electricity Generation in Bifacial Photovoltaic Modules in Polish Climatic Conditions," Energies, MDPI, vol. 14(16), pages 1-24, August.
    5. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    6. Piotr Wróblewski & Mariusz Niekurzak, 2022. "Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    7. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    8. Jasiewicz Jarosław & Cierniewski Jerzy, 2021. "SALBEC – A Python Library and GUI Application to Calculate the Diurnal Variation of the Soil Albedo," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 95-107, September.
    9. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Ooshaksaraei, Poorya & Sopian, Kamaruzzaman & Zaidi, Saleem H. & Zulkifli, Rozli, 2017. "Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells," Renewable Energy, Elsevier, vol. 102(PB), pages 279-293.
    11. Eva-Maria Grommes & Ulf Blieske & Jean-Régis Hadji-Minaglou, 2023. "Positive Impact of Red Soil on Albedo and the Annual Yield of Bifacial Photovoltaic Systems in Ghana," Energies, MDPI, vol. 16(4), pages 1-12, February.
    12. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    13. Adarsh Vaderobli & Dev Parikh & Urmila Diwekar, 2020. "Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions," Energies, MDPI, vol. 13(12), pages 1-17, June.
    14. Juhee Jang & Kyungsoo Lee, 2020. "Practical Performance Analysis of a Bifacial PV Module and System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    15. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    16. Hasan Huseyin Coban & Wojciech Lewicki & Radosław Miśkiewicz & Wojciech Drożdż, 2022. "The Economic Dimension of Using the Integration of Highway Sound Screens with Solar Panels in the Process of Generating Green Energy," Energies, MDPI, vol. 16(1), pages 1-20, December.
    17. Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2020. "A novel stationary concentrator to enhance solar intensity with absorber-only single axis tracking," Renewable Energy, Elsevier, vol. 154(C), pages 976-985.
    18. Ludwik Wicki & Robert Pietrzykowski & Dariusz Kusz, 2022. "Factors Determining the Development of Prosumer Photovoltaic Installations in Poland," Energies, MDPI, vol. 15(16), pages 1-19, August.
    19. Kyu-Won Hwang & Chul-Yong Lee, 2024. "Estimating the Deterministic and Stochastic Levelized Cost of the Energy of Fence-Type Agrivoltaics," Energies, MDPI, vol. 17(8), pages 1-19, April.
    20. Prasad, Manendra & Prasad, Ramendra, 2023. "Bifacial vs monofacial grid-connected solar photovoltaic for small islands: A case study of Fiji," Renewable Energy, Elsevier, vol. 203(C), pages 686-702.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.