IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8510-d972438.html
   My bibliography  Save this article

Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region

Author

Listed:
  • Rahimat O. Yakubu

    (Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-6464, Ghana)

  • Maame T. Ankoh

    (Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-6464, Ghana)

  • Lena D. Mensah

    (Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-6464, Ghana
    The Brew-Hammond Energy Centre, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-6464, Ghana)

  • David A. Quansah

    (Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-6464, Ghana
    The Brew-Hammond Energy Centre, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-6464, Ghana)

  • Muyiwa S. Adaramola

    (Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433 Ås, Norway)

Abstract

The validation of the potential energy yield of bifacial PV systems of various configurations at low latitudes under West African climatic conditions is critical for evaluating performance and for promoting market expansion of the technology since validation has mostly occurred in high-latitude regions. In this paper, the potential energy yield from an inclined south-facing bifacial PV module and a vertically mounted east–west bifacial PV module are compared to an inclined south-facing monofacial PV module using an analytical model, field-measured data, and simulations. For measured/modelled and PVsyst/modelled monofacial systems, the model predicts RMSE values of 1.49 and 9.02, respectively. An inclined bifacial PV system has RMSEs of 1.88 and 7.97 for measured/modelled and PVsyst/modelled, respectively, and a vertically installed system has RMSEs of 10.03 for measured/modelled and 3.76 for PVsyst/modelled. Monthly energy yield is predicted by the model, with deviations from measured data ranging from 0.08% to 1.41% for monofacial systems, from 0.05% to 4.06% for inclined bifacial systems, and from 4.63% to 9.61% for vertical bifacial systems. The average bifacial gains from the modelled, measured, and simulated data of an inclined south-facing stand-alone bifacial PV system over an inclined south-facing stand-alone monofacial system are 9.05%, 10.15%, and 5.65%. Finally, at 0.25 albedo, the inclined monofacial PV system outperforms and yields more energy than the vertically installed bifacial PV system.

Suggested Citation

  • Rahimat O. Yakubu & Maame T. Ankoh & Lena D. Mensah & David A. Quansah & Muyiwa S. Adaramola, 2022. "Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region," Energies, MDPI, vol. 15(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8510-:d:972438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, M. Ryyan & Hanna, Amir & Sun, Xingshu & Alam, Muhammad A., 2017. "Vertical bifacial solar farms: Physics, design, and global optimization," Applied Energy, Elsevier, vol. 206(C), pages 240-248.
    2. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    3. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    4. Christopher Pike & Erin Whitney & Michelle Wilber & Joshua S. Stein, 2021. "Field Performance of South-Facing and East-West Facing Bifacial Modules in the Arctic," Energies, MDPI, vol. 14(4), pages 1-15, February.
    5. Radovan Kopecek & Joris Libal, 2021. "Bifacial Photovoltaics 2021: Status, Opportunities and Challenges," Energies, MDPI, vol. 14(8), pages 1-16, April.
    6. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Brighton Mabasa & Meena D. Lysko & Henerica Tazvinga & Nosipho Zwane & Sabata J. Moloi, 2021. "The Performance Assessment of Six Global Horizontal Irradiance Clear Sky Models in Six Climatological Regions in South Africa," Energies, MDPI, vol. 14(9), pages 1-24, April.
    8. Marco Leonardi & Roberto Corso & Rachela G. Milazzo & Carmelo Connelli & Marina Foti & Cosimo Gerardi & Fabrizio Bizzarri & Stefania M. S. Privitera & Salvatore A. Lombardo, 2021. "The Effects of Module Temperature on the Energy Yield of Bifacial Photovoltaics: Data and Model," Energies, MDPI, vol. 15(1), pages 1-13, December.
    9. Juhee Jang & Kyungsoo Lee, 2020. "Practical Performance Analysis of a Bifacial PV Module and System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    10. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    11. Patel, M. Tahir & Khan, M. Ryyan & Sun, Xingshu & Alam, Muhammad A., 2019. "A worldwide cost-based design and optimization of tilted bifacial solar farms," Applied Energy, Elsevier, vol. 247(C), pages 467-479.
    12. Fernández, Eduardo F. & Pérez-Higueras, P. & Almonacid, F. & Ruiz-Arias, J.A. & Rodrigo, P. & Fernandez, J.I. & Luque-Heredia, I., 2015. "Model for estimating the energy yield of a high concentrator photovoltaic system," Energy, Elsevier, vol. 87(C), pages 77-85.
    13. Appelbaum, J., 2016. "Bifacial photovoltaic panels field," Renewable Energy, Elsevier, vol. 85(C), pages 338-343.
    14. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Cui & Junrui Zhang & Yongyong Su & Siyuan Li, 2023. "A GIS-Based Multidimensional Evaluation Method for Solar Energy Potential in Shanxi Province, China," Energies, MDPI, vol. 16(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arkadiusz Dobrzycki & Dariusz Kurz & Ewa Maćkowiak, 2021. "Influence of Selected Working Conditions on Electricity Generation in Bifacial Photovoltaic Modules in Polish Climatic Conditions," Energies, MDPI, vol. 14(16), pages 1-24, August.
    2. Juhee Jang & Kyungsoo Lee, 2020. "Practical Performance Analysis of a Bifacial PV Module and System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    3. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    4. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    5. Patel, M. Tahir & Khan, M. Ryyan & Sun, Xingshu & Alam, Muhammad A., 2019. "A worldwide cost-based design and optimization of tilted bifacial solar farms," Applied Energy, Elsevier, vol. 247(C), pages 467-479.
    6. Khan, M. Ryyan & Sakr, Enas & Sun, Xingshu & Bermel, Peter & Alam, Muhammad A., 2019. "Ground sculpting to enhance energy yield of vertical bifacial solar farms," Applied Energy, Elsevier, vol. 241(C), pages 592-598.
    7. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    8. Seung-Min Lee & Eui-Chan Lee & Jung-Hun Lee & Sun-Ho Yu & Jae-Sil Heo & Woo-Young Lee & Bong-Suck Kim, 2023. "Analysis of the Output Characteristics of a Vertical Photovoltaic System Based on Operational Data: A Case Study in Republic of Korea," Energies, MDPI, vol. 16(19), pages 1-14, October.
    9. Kyu-Won Hwang & Chul-Yong Lee, 2024. "Estimating the Deterministic and Stochastic Levelized Cost of the Energy of Fence-Type Agrivoltaics," Energies, MDPI, vol. 17(8), pages 1-19, April.
    10. Patel, M. Tahir & Vijayan, Ramachandran A. & Asadpour, Reza & Varadharajaperumal, M. & Khan, M. Ryyan & Alam, Muhammad A., 2020. "Temperature-dependent energy gain of bifacial PV farms: A global perspective," Applied Energy, Elsevier, vol. 276(C).
    11. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).
    12. Johnson, Joji & Manikandan, S., 2023. "Experimental study and model development of bifacial photovoltaic power plants for Indian climatic zones," Energy, Elsevier, vol. 284(C).
    13. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Patel, M. Tahir & Asadpour, Reza & Bin Jahangir, Jabir & Ryyan Khan, M. & Alam, Muhammad A., 2023. "Current-matching erases the anticipated performance gain of next-generation two-terminal Perovskite-Si tandem solar farms," Applied Energy, Elsevier, vol. 329(C).
    15. Patel, M. Tahir & Ahmed, M. Sojib & Imran, Hassan & Butt, Nauman Z. & Khan, M. Ryyan & Alam, Muhammad A., 2021. "Global analysis of next-generation utility-scale PV: Tracking bifacial solar farms," Applied Energy, Elsevier, vol. 290(C).
    16. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    17. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    18. Zhang, Wei & Zhao, Oufan & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhong, Jianmei & Zeng, Xiding & Zou, Ruiwen, 2023. "Factors influence analysis and life cycle assessment of innovative bifacial photovoltaic applied on building facade," Energy, Elsevier, vol. 279(C).
    19. Preeti Kumari Sahu & J. N. Roy & Chandan Chakraborty & Senthilarasu Sundaram, 2021. "A New Model for Estimation of Energy Extraction from Bifacial Photovoltaic Modules," Energies, MDPI, vol. 14(16), pages 1-16, August.
    20. Kuo, Chung-Feng Jeffrey & Yang, Pei-Chung & Umar, Mega Lazuardi & Lan, Wei-Lun, 2019. "A bifacial photovoltaic thermal system design with parameter optimization and performance beneficial validation," Applied Energy, Elsevier, vol. 247(C), pages 335-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8510-:d:972438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.