IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924019081.html
   My bibliography  Save this article

Tilt angle optimization for bifacial PV module: Balancing direct and reflected irradiance on white painted ground surfaces

Author

Listed:
  • Basak, Achintya
  • Chakraborty, Suprava
  • Behura, Aruna Kumar

Abstract

This study investigates the performance of a 440 W bifacial solar photovoltaic (PV) module installed on the rooftop of the Technology Tower (TT) building at Vellore Institute of Technology (VIT), Vellore. The influence of tilt angle on energy generation was examined by systematically adjusting the module from 0° to 90° during sunny days in February 2024. Measurements were collected at one-hour intervals between 9:00 AM and 5:00 PM. To enhance rear irradiation, the ground beneath the module was painted with white reflective material. Key performance parameters were recorded, and irradiation ratios were calculated for each tilt angle. Results showed a maximum daily average power generation of 316.85 W at a tilt angle of 30°. The corresponding bifacial irradiation ratio ranged from 0.20 to 0.40. Daily average power exhibited a progressive increase from 0° to 30° tilt, followed by a decline to a minimum of 148.51 W at 90°. Interestingly, the irradiation ratio displayed the opposite trend, increasing from 0.32 to 0.96 at 90°. These observations suggest that while overall irradiation reaching the module increases with tilt angle, optimal power generation is achieved at a 30° tilt due to a balance between front and rear irradiance. This study highlights the critical role of tilt angle and ground reflectance when using white paint in maximizing energy output from bifacial PV modules. Within the experimental setup, the PV module's power output remained relatively stable for tilt angles between 13° and 45°, even when considering a 5 % measurement uncertainty. Further investigations are affirmed to explore the impact of seasonal variations and weather conditions on the performance of bifacial modules in this specific geographical location.

Suggested Citation

  • Basak, Achintya & Chakraborty, Suprava & Behura, Aruna Kumar, 2025. "Tilt angle optimization for bifacial PV module: Balancing direct and reflected irradiance on white painted ground surfaces," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019081
    DOI: 10.1016/j.apenergy.2024.124525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, M. Ryyan & Hanna, Amir & Sun, Xingshu & Alam, Muhammad A., 2017. "Vertical bifacial solar farms: Physics, design, and global optimization," Applied Energy, Elsevier, vol. 206(C), pages 240-248.
    2. Gu, Wenbo & Li, Senji & Liu, Xing & Chen, Zhenwu & Zhang, Xiaochun & Ma, Tao, 2021. "Experimental investigation of the bifacial photovoltaic module under real conditions," Renewable Energy, Elsevier, vol. 173(C), pages 1111-1122.
    3. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    4. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).
    5. Patel, M. Tahir & Khan, M. Ryyan & Sun, Xingshu & Alam, Muhammad A., 2019. "A worldwide cost-based design and optimization of tilted bifacial solar farms," Applied Energy, Elsevier, vol. 247(C), pages 467-479.
    6. Appelbaum, J., 2016. "Bifacial photovoltaic panels field," Renewable Energy, Elsevier, vol. 85(C), pages 338-343.
    7. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    2. Juhee Jang & Kyungsoo Lee, 2020. "Practical Performance Analysis of a Bifacial PV Module and System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    3. Rahimat O. Yakubu & Maame T. Ankoh & Lena D. Mensah & David A. Quansah & Muyiwa S. Adaramola, 2022. "Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region," Energies, MDPI, vol. 15(22), pages 1-17, November.
    4. Johnson, Joji & Manikandan, S., 2023. "Experimental study and model development of bifacial photovoltaic power plants for Indian climatic zones," Energy, Elsevier, vol. 284(C).
    5. Patel, M. Tahir & Ahmed, M. Sojib & Imran, Hassan & Butt, Nauman Z. & Khan, M. Ryyan & Alam, Muhammad A., 2021. "Global analysis of next-generation utility-scale PV: Tracking bifacial solar farms," Applied Energy, Elsevier, vol. 290(C).
    6. Patel, M. Tahir & Khan, M. Ryyan & Sun, Xingshu & Alam, Muhammad A., 2019. "A worldwide cost-based design and optimization of tilted bifacial solar farms," Applied Energy, Elsevier, vol. 247(C), pages 467-479.
    7. Khan, M. Ryyan & Sakr, Enas & Sun, Xingshu & Bermel, Peter & Alam, Muhammad A., 2019. "Ground sculpting to enhance energy yield of vertical bifacial solar farms," Applied Energy, Elsevier, vol. 241(C), pages 592-598.
    8. Zhong, Jianmei & Zhang, Wei & Xie, Lingzhi & Zhao, Oufan & Wu, Xin & Zeng, Xiding & Guo, Jiahong, 2023. "Development and challenges of bifacial photovoltaic technology and application in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Patel, M. Tahir & Vijayan, Ramachandran A. & Asadpour, Reza & Varadharajaperumal, M. & Khan, M. Ryyan & Alam, Muhammad A., 2020. "Temperature-dependent energy gain of bifacial PV farms: A global perspective," Applied Energy, Elsevier, vol. 276(C).
    10. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Patel, M. Tahir & Asadpour, Reza & Bin Jahangir, Jabir & Ryyan Khan, M. & Alam, Muhammad A., 2023. "Current-matching erases the anticipated performance gain of next-generation two-terminal Perovskite-Si tandem solar farms," Applied Energy, Elsevier, vol. 329(C).
    12. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    13. Preeti Kumari Sahu & J. N. Roy & Chandan Chakraborty & Senthilarasu Sundaram, 2021. "A New Model for Estimation of Energy Extraction from Bifacial Photovoltaic Modules," Energies, MDPI, vol. 14(16), pages 1-16, August.
    14. Ganesan, K. & Winston, D. Prince & Sugumar, S. & Prasath, T. Hari, 2024. "Performance investigation of n-type PERT bifacial solar photovoltaic module installed at different elevations," Renewable Energy, Elsevier, vol. 227(C).
    15. Polo, Jesús & Alonso-Abella, Miguel & Marcos, Ana & Sanz-Saiz, Carlos & Martín-Chivelet, Nuria, 2024. "On the use of reference modules in characterizing the performance of bifacial modules for rooftop canopy applications," Renewable Energy, Elsevier, vol. 220(C).
    16. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    17. Ma, Chao & Deng, Zexing & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Wu, Runze & Tian, Zhuojun, 2024. "Space optimization of utility-scale photovoltaic power plants considering the impact of inter-row shading," Applied Energy, Elsevier, vol. 370(C).
    18. Kyu-Won Hwang & Chul-Yong Lee, 2024. "Estimating the Deterministic and Stochastic Levelized Cost of the Energy of Fence-Type Agrivoltaics," Energies, MDPI, vol. 17(8), pages 1-19, April.
    19. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    20. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.