IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1673-d1368308.html
   My bibliography  Save this article

Reduction of Iron Oxides for CO 2 Capture Materials

Author

Listed:
  • Antonio Fabozzi

    (National Research Council, Institute of Sciences and Technologies for Sustainable Energy and Mobility (CNR-STEMS), P. le V. Tecchio 80, 80125 Napoli, Italy)

  • Francesca Cerciello

    (National Research Council, Institute of Sciences and Technologies for Sustainable Energy and Mobility (CNR-STEMS), P. le V. Tecchio 80, 80125 Napoli, Italy)

  • Osvalda Senneca

    (National Research Council, Institute of Sciences and Technologies for Sustainable Energy and Mobility (CNR-STEMS), P. le V. Tecchio 80, 80125 Napoli, Italy)

Abstract

The iron industry is the largest energy-consuming manufacturing sector in the world, emitting 4–5% of the total carbon dioxide (CO 2 ). The development of iron-based systems for CO 2 capture and storage could effectively contribute to reducing CO 2 emissions. A wide set of different iron oxides, such as hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and wüstite (Fe (1−y) O) could in fact be employed for CO 2 capture at room temperature and pressure upon an investigation of their capturing properties. In order to achieve the most functional iron oxide form for CO 2 capture, starting from Fe 2 O 3 , a reducing agent such as hydrogen (H 2 ) or carbon monoxide (CO) can be employed. In this review, we present the state-of-the-art and recent advances on the different iron oxide materials employed, as well as on their reduction reactions with H 2 and CO.

Suggested Citation

  • Antonio Fabozzi & Francesca Cerciello & Osvalda Senneca, 2024. "Reduction of Iron Oxides for CO 2 Capture Materials," Energies, MDPI, vol. 17(7), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1673-:d:1368308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussein, A.M.A. & Burra, K.G. & Bassioni, G. & Hammouda, R.M. & Gupta, A.K., 2019. "Production of CO from CO2 over mixed-metal oxides derived from layered-double-hydroxides," Applied Energy, Elsevier, vol. 235(C), pages 1183-1191.
    2. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    3. Griffin, Paul W. & Hammond, Geoffrey P., 2019. "Industrial energy use and carbon emissions reduction in the iron and steel sector: A UK perspective," Applied Energy, Elsevier, vol. 249(C), pages 109-125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Chao & Zhu, Rong & Wei, Guangsheng & Dong, Kai & Xia, Tao, 2023. "Typical case of CO2 capture in Chinese iron and steel enterprises: Exergy analysis," Applied Energy, Elsevier, vol. 336(C).
    2. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    3. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    5. Zhou, Xiaobin & Liu, Chao & Fan, Yinming & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Yinian & Zhu, Zongqiang, 2022. "Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics," Energy, Elsevier, vol. 255(C).
    6. Wu, Xiaomei & Fan, Huifeng & Mao, Yuanhao & Sharif, Maimoona & Yu, Yunsong & Zhang, Zaoxiao & Liu, Guangxin, 2022. "Systematic study of an energy efficient MEA-based electrochemical CO2 capture process: From mechanism to practical application," Applied Energy, Elsevier, vol. 327(C).
    7. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Zhang, Xue & Li, Lei & Su, Yuliang & Da, Qi'an & Fu, Jingang & Wang, Rujun & Chen, Fangfang, 2023. "Microfluidic investigation on asphaltene interfaces attempts to carbon sequestration and leakage: Oil-CO2 phase interaction characteristics at ultrahigh temperature and pressure," Applied Energy, Elsevier, vol. 348(C).
    9. Sang‐Jun Han & Jung‐Ho Wee, 2021. "Comparison of CO2 absorption performance between methyl‐di‐ ethanolamine and tri‐ethanolamine solution systems and its analysis in terms of amine molecules," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 445-460, June.
    10. Saharudin, Djasmine Mastisya & Jeswani, Harish Kumar & Azapagic, Adisa, 2023. "Bioenergy with carbon capture and storage (BECSS): Life cycle environmental and economic assessment of electricity generated from palm oil wastes," Applied Energy, Elsevier, vol. 349(C).
    11. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    12. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    14. Wang, Fuhuan & Xie, Heping & Liu, Tao & Wu, Yifan & Chen, Bin, 2020. "Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential," Applied Energy, Elsevier, vol. 269(C).
    15. Maytham Alabid & Cristian Dinca, 2024. "Membrane CO 2 Separation System Improvement for Coal-Fired Power Plant Integration," Energies, MDPI, vol. 17(2), pages 1-23, January.
    16. Ji, Guozhao & Yang, Hang & Memon, Muhammad Zaki & Gao, Yuan & Qu, Boyu & Fu, Weng & Olguin, Gianni & Zhao, Ming & Li, Aimin, 2020. "Recent advances on kinetics of carbon dioxide capture using solid sorbents at elevated temperatures," Applied Energy, Elsevier, vol. 267(C).
    17. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Qiu, Ziyang & Yuan, Yuxing & He, Jianfei & Li, Yingnan & Wang, Yisong & Du, Tao, 2021. "A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry," Energy, Elsevier, vol. 235(C).
    18. Linan Gao & Xiaofei Liu & Xinyi Mei & Guangwei Rui & Jingcheng Li, 2022. "Research on the Spatial-Temporal Distribution Characteristics and Influencing Factors of Carbon Emission Efficiency in China’s Metal Smelting Industry—Based on the Three-Stage DEA Method," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    19. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    20. Johannsen, Rasmus Magni & Mathiesen, Brian Vad & Kermeli, Katerina & Crijns-Graus, Wina & Østergaard, Poul Alberg, 2023. "Exploring pathways to 100% renewable energy in European industry," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1673-:d:1368308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.