IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1348-d1355252.html
   My bibliography  Save this article

Enhancing the Viability of a Promising E-Fuel: Oxymethylene Ether–Decanol Mixtures

Author

Listed:
  • Márton Virt

    (Department of Automotive Technologies, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111 Budapest, Hungary)

  • Máté Zöldy

    (Department of Automotive Technologies, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111 Budapest, Hungary)

Abstract

Achieving sustainable mobility is a crucial factor in maintaining long-term economic growth without adverse effects on human health and the environment. E-fuels, such as the promising oxymethylene ether (OME), can contribute to sustainable road transport. However, this compound does not meet the requirements of EN590; thus, it is unsuitable for unmodified diesel engines. This work aims to improve the applicability of OME by blending it with n-decanol, which can also be produced sustainably. Combustion and emissions were investigated in a medium-duty commercial diesel engine with different binary and ternary mixtures of oxymethylene ether, n-decanol, and B7 diesel. Laboratory analysis of six key mixture parameters revealed that the formulated blends met the EN590 requirements, with the exception of that of density. The results demonstrated that the created mixtures, including one without any diesel fuel, can be efficiently utilized in unmodified diesel engines. OME’s beneficial effects on combustion and emission were preserved while its viability was improved; a maximum increase of 7.6% in brake thermal efficiency was observed, alongside a potential decrease of nearly 70% in PM emissions at unaltered NO x levels.

Suggested Citation

  • Márton Virt & Máté Zöldy, 2024. "Enhancing the Viability of a Promising E-Fuel: Oxymethylene Ether–Decanol Mixtures," Energies, MDPI, vol. 17(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1348-:d:1355252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omari, Ahmad & Heuser, Benedikt & Pischinger, Stefan & Rüdinger, Christoph, 2019. "Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines," Applied Energy, Elsevier, vol. 239(C), pages 1242-1249.
    2. António André Chivanga Barros & Edmilson Cipriano & Tchilene Major & Benevides Pessela, 2022. "Production of Anhydrous Ethyl Alcohol from the Hydrolysis and Alcoholic Fermentation of Corn Starch," Cognitive Sustainability, Cognitive Sustainability Ltd., vol. 1(4), pages 33-40, December.
    3. Ovaere, Marten & Proost, Stef, 2022. "Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package," Energy Policy, Elsevier, vol. 168(C).
    4. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    5. Ali Alahmer & Hegazy Rezk & Wail Aladayleh & Ahmad O. Mostafa & Mahmoud Abu-Zaid & Hussein Alahmer & Mohamed R. Gomaa & Amel A. Alhussan & Rania M. Ghoniem, 2022. "Modeling and Optimization of a Compression Ignition Engine Fueled with Biodiesel Blends for Performance Improvement," Mathematics, MDPI, vol. 10(3), pages 1-29, January.
    6. Márton Virt & Gergely Granovitter & Máté Zöldy & Ádám Bárdos & Ádám Nyerges, 2021. "Multipulse Ballistic Injection: A Novel Method for Improving Low Temperature Combustion with Early Injection Timings," Energies, MDPI, vol. 14(13), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayeres, Inge & Proost, Stef & Delhaye, Eef & Novelli, Philippe & Conijn, Sjaak & Gómez-Jiménez, Inmaculada & Rivas-Brousse, Daniel, 2023. "Climate ambitions for European aviation: Where can sustainable aviation fuels bring us?," Energy Policy, Elsevier, vol. 175(C).
    2. Jinpeng Yang, 2023. "Transaction decision optimization of new electricity market based on virtual power plant participation and Stackelberg game," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-20, April.
    3. Börjesson, Maria & Proost, Stef, 2024. "The costs and benefits of e-roads versus battery-only trucks when costs are uncertain," Working Papers 2024:3, Swedish National Road & Transport Research Institute (VTI).
    4. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    5. Zuzanna Kłos-Adamkiewicz & Elżbieta Szaruga & Agnieszka Gozdek & Magdalena Kogut-Jaworska, 2023. "Links between the Energy Intensity of Public Urban Transport, Regional Economic Growth and Urbanisation: The Case of Poland," Energies, MDPI, vol. 16(9), pages 1-25, April.
    6. Betgeri, Vikram & Bhardwaj, Om Parkash & Pischinger, Stefan, 2023. "Investigation of the drop-in capabilities of a renewable 1-Octanol based E-fuel for heavy-duty engine applications," Energy, Elsevier, vol. 282(C).
    7. Zhang, Yanzhi & Li, Zilong & Tamilselvan, Pachiannan & Jiang, Chenxu & He, Zhixia & Zhong, Wenjun & Qian, Yong & Wang, Qian & Lu, Xingcai, 2019. "Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends," Energy, Elsevier, vol. 187(C).
    8. Ahmad O. Hasan & Khamis Essa & Mohamed R. Gomaa, 2022. "Synthesis, Structure Characterization and Study of a New Kind of Catalyst: A Monolith of Nickel Made by Additive Manufacturing Coated with Platinum," Energies, MDPI, vol. 15(20), pages 1-13, October.
    9. Chakrapani Nagappan Kowthaman & S. M. Ashrafur Rahman & I. M. R. Fattah, 2023. "Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines," Energies, MDPI, vol. 16(12), pages 1-18, June.
    10. Speth, Daniel & Plötz, Patrick & Wietschel, Martin, 2025. "An optimal capacity-constrained fast charging network for battery electric trucks in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 193(C).
    11. Jie Hu & Junliang Wang & Jiawei Zeng & Xianglin Zhong, 2018. "Model-Based Temperature Sensor Fault Detection and Fault-Tolerant Control of Urea-Selective Catalyst Reduction Control Systems," Energies, MDPI, vol. 11(7), pages 1-17, July.
    12. Zhu, Qiren & Zong, Yichen & Yu, Wenbin & Yang, Wenming & Kraft, Markus, 2021. "Understanding the blending effect of polyoxymethylene dimethyl ethers as additive in a common-rail diesel engine," Applied Energy, Elsevier, vol. 300(C).
    13. Abban, Olivier Joseph & Xing, Yao Hong & Nuţă, Alina Cristina & Nuţă, Florian Marcel & Borah, Prasad Siba & Ofori, Charles & Jing, Yao Jing, 2023. "Policies for carbon-zero targets: Examining the spillover effects of renewable energy and patent applications on environmental quality in Europe," Energy Economics, Elsevier, vol. 126(C).
    14. Wang Gao & Jiajia Wei & Shixiong Yang, 2023. "The Asymmetric Effects of Extreme Climate Risk Perception on Coal Futures Return Dynamics: Evidence from Nonparametric Causality-In-Quantiles Tests," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    15. Li, Yuhui & Huang, Yinmin & Chen, Hanyu & Wei, Feng & Zhang, Zunhua & Zhou, Mengni, 2024. "Combustion and emission of diesel/PODE/gasoline blended fuel in a diesel engine that meet the China VI emission standards," Energy, Elsevier, vol. 301(C).
    16. Svetlana Proskurina & Clara Mendoza-Martinez, 2023. "Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU," Energies, MDPI, vol. 16(14), pages 1-16, July.
    17. Mao, Jianshu & Liu, Yi & Ma, Xiao & Chen, Qingchu & Wang, Zhi & Shuai, Shijin, 2024. "Combustion and emission characteristics of ammonia–diesel and ammonia–PODE dual fuel engines with multi-time ignition mixed-mode combustion (MIMC) mode," Energy, Elsevier, vol. 313(C).
    18. Camelia Petrescu & Valeriu David, 2022. "Preface to the Special Issue on “Modelling and Simulation in Engineering”," Mathematics, MDPI, vol. 10(14), pages 1-3, July.
    19. Zhu, Qiren & Zong, Yichen & Tan, Yong Ren & Lyu, Jie-Yao & Pan, Jianfeng & Zhou, Xinyi & Liu, Haili & He, Song & Chen, Wang & Yu, Wenbin & Yang, Wenming & Kraft, Markus, 2024. "Comparative analysis of PODE3 and PODE4 fuel additives for emission reduction and soot characteristics in compression ignition engines," Energy, Elsevier, vol. 286(C).
    20. Olga Orynycz & Paweł Ruchała & Karol Tucki & Andrzej Wasiak & Máté Zöldy, 2024. "A Theoretical Analysis of Meteorological Data as a Road towards Optimizing Wind Energy Generation," Energies, MDPI, vol. 17(11), pages 1-17, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1348-:d:1355252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.