IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3727-d579492.html
   My bibliography  Save this article

Multipulse Ballistic Injection: A Novel Method for Improving Low Temperature Combustion with Early Injection Timings

Author

Listed:
  • Márton Virt

    (Department of Automotive Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary)

  • Gergely Granovitter

    (Department of Automotive Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary)

  • Máté Zöldy

    (Department of Automotive Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary)

  • Ádám Bárdos

    (Department of Automotive Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary)

  • Ádám Nyerges

    (Department of Automotive Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary)

Abstract

Nowadays, increasingly stricter regulations on emission reduction are inducing rapid developments in combustion science. Low-temperature combustion (LTC) is an advanced combustion technology that increases an engine’s thermal efficiency and even provides low emissions of nitrogen oxides (NO x ) and particulate matter (PM). The technology often uses early direct injections to achieve sufficient mixture homogeneity. This leads to increasing wall wetting and lower combustion efficiency. This paper introduces the Multipulse ballistic injection (MBI) method to improve combustion with early injection timings. The research was carried out in a four-cylinder medium-duty diesel engine with high-pressure exhaust gas recirculation (HP-EGR). The investigation was divided into two experiments. In the first experiment, MBI was examined without EGR, and in the second, EGR was applied to study its effects. It was found that the MBI strategy decreased wall wetting and increased homogeneity and the indicated mean effective pressure (IMEP) at early injection angles.

Suggested Citation

  • Márton Virt & Gergely Granovitter & Máté Zöldy & Ádám Bárdos & Ádám Nyerges, 2021. "Multipulse Ballistic Injection: A Novel Method for Improving Low Temperature Combustion with Early Injection Timings," Energies, MDPI, vol. 14(13), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3727-:d:579492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    2. Li, Jing & Yang, Wenming & Zhou, Dezhi, 2017. "Review on the management of RCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 65-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Márton Virt & Máté Zöldy, 2024. "Enhancing the Viability of a Promising E-Fuel: Oxymethylene Ether–Decanol Mixtures," Energies, MDPI, vol. 17(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Yew Heng Teoh & Hishammudin Afifi Huspi & Heoy Geok How & Farooq Sher & Zia Ud Din & Thanh Danh Le & Huu Tho Nguyen, 2021. "Effect of Intake Air Temperature and Premixed Ratio on Combustion and Exhaust Emissions in a Partial HCCI-DI Diesel Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    3. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    4. Kocakulak, Tolga & Babagiray, Mustafa & Nacak, Çağatay & Safieddin Ardebili, Seyed Mohammad & Calam, Alper & Solmaz, Hamit, 2022. "Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends," Renewable Energy, Elsevier, vol. 182(C), pages 827-841.
    5. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    6. Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
    7. Pradhan, Debalaxmi & Bendu, Harisankar & Singh, R.K. & Murugan, S., 2017. "Mahua seed pyrolysis oil blends as an alternative fuel for light-duty diesel engines," Energy, Elsevier, vol. 118(C), pages 600-612.
    8. Aydoğan, Bilal, 2020. "An experimental examination of the effects of n-hexane and n-heptane fuel blends on combustion, performance and emissions characteristics in a HCCI engine," Energy, Elsevier, vol. 192(C).
    9. Martín, Jaime & Novella, Ricardo & García, Antonio & Carreño, Ricardo & Heuser, Benedikt & Kremer, Florian & Pischinger, Stefan, 2016. "Thermal analysis of a light-duty CI engine operating with diesel-gasoline dual-fuel combustion mode," Energy, Elsevier, vol. 115(P1), pages 1305-1319.
    10. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    11. Truong, D.Q. & Marco, J. & Greenwood, D. & Harper, L. & Corrochano, D.G. & Yoon, J.I., 2018. "Challenges of micro/mild hybridisation for construction machinery and applicability in UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 301-320.
    12. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    13. Marco D’Amato & Annarita Viggiano & Vinicio Magi, 2020. "On the Turbulence-Chemistry Interaction of an HCCI Combustion Engine," Energies, MDPI, vol. 13(22), pages 1-23, November.
    14. Fırat, Müjdat & Melih Şenocak, Şafak & Okcu, Mutlu & Varol, Yasin & Altun, Şehmus, 2023. "Ozone-assisted combustion and emission control in RCCI engines: A comprehensive study," Energy, Elsevier, vol. 284(C).
    15. Shi, Lei & Xiao, Wei & Li, Mengyu & Lou, Lin & Deng, Kang-yao, 2017. "Research on the effects of injection strategy on LTC combustion based on two-stage fuel injection," Energy, Elsevier, vol. 121(C), pages 21-31.
    16. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    17. Liu, Haoye & Wang, Zhi & Li, Yanfei & Zheng, Yanyan & He, Tanjin & Wang, Jianxin, 2019. "Recent progress in the application in compression ignition engines and the synthesis technologies of polyoxymethylene dimethyl ethers," Applied Energy, Elsevier, vol. 233, pages 599-611.
    18. Zhaojie Shen & Wenzheng Cui & Xiaodong Ju & Zhongchang Liu & Shaohua Wu & Jianguo Yang, 2017. "Numeric Investigation of Gas Distribution in the Intake Manifold and Intake Ports of a Multi-Cylinder Diesel Engine Refined for Exhaust Gas Stratification," Energies, MDPI, vol. 10(11), pages 1-13, November.
    19. Zhao, Wenbin & Li, Zilong & Huang, Guan & Zhang, Yaoyuan & Qian, Yong & Lu, Xingcai, 2020. "Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode," Applied Energy, Elsevier, vol. 266(C).
    20. Zheng, Zunqing & Xia, Mingtao & Liu, Haifeng & Wang, Xiaofeng & Yao, Mingfa, 2018. "Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol," Energy, Elsevier, vol. 148(C), pages 824-838.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3727-:d:579492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.