IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8593-d606674.html
   My bibliography  Save this article

Effect of Intake Air Temperature and Premixed Ratio on Combustion and Exhaust Emissions in a Partial HCCI-DI Diesel Engine

Author

Listed:
  • Yew Heng Teoh

    (School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia)

  • Hishammudin Afifi Huspi

    (School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia)

  • Heoy Geok How

    (Department of Engineering, School of Engineering, Computing and Built Environment, UOW Malaysia KDU Penang University College, 32, Jalan Anson, Georgetown 10400, Penang, Malaysia)

  • Farooq Sher

    (Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK)

  • Zia Ud Din

    (School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia)

  • Thanh Danh Le

    (Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

  • Huu Tho Nguyen

    (Department of Fundamentals of Mechanical Engineering, Faculty of Automotive, Mechanical, Electrical and Electronic Engineering (FAME), An Phu Dong Campus, Nguyen Tat Thanh University, Ho Chi Minh City 729800, Vietnam)

Abstract

Homogeneous charge compression ignition (HCCI) is considered an advanced combustion method for internal combustion engines that offers simultaneous reductions in oxides of nitrogen (NO x ) emissions and increased fuel efficiency. The present study examines the influence of intake air temperature (IAT) and premixed diesel fuel on fuel self-ignition characteristics in a light-duty compression ignition engine. Partial HCCI was achieved by port injection of the diesel fuel through air-assisted injection while sustaining direct diesel fuel injection into the cylinder for initiating combustion. The self-ignition of diesel fuel under such a set-up was studied with variations in premixed ratios (0–0.60) and inlet temperatures (40–100 °C) under a constant 1600 rpm engine speed with 20 Nm load. Variations in performance, emissions and combustion characteristics with premixed fuel and inlet air heating were analysed in comparison with those recorded without. Heat release rate profiles determined from recorded in-cylinder pressure depicted evident multiple-stage ignitions (up to three-stage ignition in several cases) in this study. Compared with the premixed ratio, the inlet air temperature had a greater effect on low-temperature reaction and HCCI combustion timing. Nonetheless, an increase in the premixed ratio was found to be influential in reducing nitric oxides emissions.

Suggested Citation

  • Yew Heng Teoh & Hishammudin Afifi Huspi & Heoy Geok How & Farooq Sher & Zia Ud Din & Thanh Danh Le & Huu Tho Nguyen, 2021. "Effect of Intake Air Temperature and Premixed Ratio on Combustion and Exhaust Emissions in a Partial HCCI-DI Diesel Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8593-:d:606674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2012. "Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique," Applied Energy, Elsevier, vol. 99(C), pages 116-125.
    2. Ganesh, D. & Nagarajan, G., 2010. "Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation," Energy, Elsevier, vol. 35(1), pages 148-157.
    3. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
    4. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Bhuiya, M.M.K., 2016. "Recent development of biodiesel combustion strategies and modelling for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1068-1086.
    5. Kumar, Pravin & Rehman, A., 2016. "Bio-diesel in homogeneous charge compression ignition (HCCI) combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 536-550.
    6. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.
    7. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    8. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nihal Mishra & Shubham Mitra & Abhishek Thapliyal & Aniket Mahajan & T. M. Yunus Khan & Sreekanth Manavalla & Rahmath Ulla Baig & Ayub Ahmed Janvekar & Feroskhan M, 2023. "Exploring the Effects of DEE Pilot Injection on a Biogas-Fueled HCCI Engine at Different Injection Locations," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    2. Ileana González & Antonio Sánchez-Squella & Diego Langarica-Cordoba & Fernando Yanine-Misleh & Victor Ramirez, 2021. "A PI + Sliding-Mode Controller Based on the Discontinuous Conduction Mode for an Unidirectional Buck–Boost Converter with Electric Vehicle Applications," Energies, MDPI, vol. 14(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    3. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.
    4. Shi, Lei & Xiao, Wei & Li, Mengyu & Lou, Lin & Deng, Kang-yao, 2017. "Research on the effects of injection strategy on LTC combustion based on two-stage fuel injection," Energy, Elsevier, vol. 121(C), pages 21-31.
    5. Kumar, Pravin & Rehman, A., 2016. "Bio-diesel in homogeneous charge compression ignition (HCCI) combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 536-550.
    6. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Chen, Lin & Zhang, Ren & Pan, Jiaying & Wei, Haiqiao, 2020. "Effects of partitioned fuel distribution on auto-ignition and knocking under spark assisted compression ignition conditions," Applied Energy, Elsevier, vol. 260(C).
    8. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    9. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    10. M. Mofijur & M.M. Hasan & T.M.I. Mahlia & S.M. Ashrafur Rahman & A.S. Silitonga & Hwai Chyuan Ong, 2019. "Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review," Energies, MDPI, vol. 12(18), pages 1-21, September.
    11. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    12. Marco D’Amato & Annarita Viggiano & Vinicio Magi, 2020. "On the Turbulence-Chemistry Interaction of an HCCI Combustion Engine," Energies, MDPI, vol. 13(22), pages 1-23, November.
    13. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    14. Kim, Donghwan & Son, Yousang & Park, Sungwook, 2022. "Effects of operating parameters on in-cylinder flow characteristics of an optically accessible engine with a spray-guided injector," Energy, Elsevier, vol. 245(C).
    15. Fridrichová, K. & Drápal, L. & Vopařil, J. & Dlugoš, J., 2021. "Overview of the potential and limitations of cylinder deactivation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    16. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    17. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, Elsevier, vol. 122(C), pages 249-264.
    18. Sharvini, Siva Raman & Noor, Zainura Zainon & Chong, Chun Shiong & Stringer, Lindsay C & Glew, David, 2020. "Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies," Energy, Elsevier, vol. 191(C).
    19. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    20. Desantes, J.M. & García-Oliver, J.M. & Vera-Tudela, W. & López-Pintor, D. & Schneider, B. & Boulouchos, K., 2016. "Study of the auto-ignition phenomenon of PRFs under HCCI conditions in a RCEM by means of spectroscopy," Applied Energy, Elsevier, vol. 179(C), pages 389-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8593-:d:606674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.