IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1184-d1349707.html
   My bibliography  Save this article

Examining the Coopetition Relationships in Renewable Energy Trade among BRI Countries: Complexity, Stability, and Evolution

Author

Listed:
  • Yufei Xu

    (School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, China
    Institute of Carbon Neutrality Development, Jiangsu University, Zhenjiang 212013, China)

  • Zhangyi Ji

    (School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, China)

  • Chenming Jiang

    (School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, China)

  • Wei Xu

    (School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, China
    Institute of Carbon Neutrality Development, Jiangsu University, Zhenjiang 212013, China)

  • Cuixia Gao

    (School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, China
    Institute of Carbon Neutrality Development, Jiangsu University, Zhenjiang 212013, China
    School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

The Belt and Road Initiative (BRI) has significantly transformed the traditional energy market and reshaped international cooperation and conflict dynamics through its expanding trade in renewable energy resources. This study focuses on examining the complex and evolving nature of coopetition relationships in the renewable energy trade among BRI countries from 2013 to 2020. Understanding the interplay between cooperation and competition in this sector is crucial for comprehending the dynamics and stability of these trade relationships. Using a signed network approach, the findings of this study reveal that the countries predominantly exhibit a cooperative relationship. However, as time progresses, a notable pattern emerges, characterized by the coexistence of “competitive cooperation” and “cooperative competition”. In addition, coopetition group clustering is strongly influenced by geographical location. China, as a key player in the BRI, demonstrates a coopetition group characterized by a high inflow and low outflow pattern. Furthermore, the implementation of the BRI has greatly improved the overall stability of trade along the route. However, the coexistence of competition and cooperation among nations has increased the uncertainty of trade relations, thereby exerting a certain level of influence on their stability. Based on these findings, this study proposes policy recommendations to strength renewable energy trade relationships along the BRI route.

Suggested Citation

  • Yufei Xu & Zhangyi Ji & Chenming Jiang & Wei Xu & Cuixia Gao, 2024. "Examining the Coopetition Relationships in Renewable Energy Trade among BRI Countries: Complexity, Stability, and Evolution," Energies, MDPI, vol. 17(5), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1184-:d:1349707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Bo & Liu, Jiahao & Lin, Renda & Chevallier, Julien, 2021. "Cross-border systemic risk spillovers in the global oil system: Does the oil trade pattern matter?," Energy Economics, Elsevier, vol. 101(C).
    2. Viet HOANG, 2018. "Assessing the agricultural trade complementarity of the Association of Southeast Asian Nations countries," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 464-475.
    3. Zhang, Hai-Ying & Ji, Qiang & Fan, Ying, 2014. "Competition, transmission and pattern evolution: A network analysis of global oil trade," Energy Policy, Elsevier, vol. 73(C), pages 312-322.
    4. Chen, Jinyu & Luo, Qian & Sun, Xin & Zhang, Zitao & Dong, Xuesong, 2023. "The impact of renewable energy consumption on lithium trade patterns: An industrial chain perspective," Resources Policy, Elsevier, vol. 85(PA).
    5. Gao, Cuixia & Sun, Mei & Shen, Bo, 2015. "Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis," Applied Energy, Elsevier, vol. 156(C), pages 542-554.
    6. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    7. Finger, J M & Kreinin, M E, 1979. "A Measure of 'Export Similarity' and Its Possible Uses," Economic Journal, Royal Economic Society, vol. 89(356), pages 905-912, December.
    8. Zhang, Peipei & Sun, Mei & Zhang, Xiaoling & Gao, Cuixia, 2017. "Who are leading the change? The impact of China’s leading PV enterprises: A complex network analysis," Applied Energy, Elsevier, vol. 207(C), pages 477-493.
    9. repec:aud:audfin:v:20:y:2018:i:49:p:788 is not listed on IDEAS
    10. Xiaosong Zheng & Lijun Jia & Jiawen Bao & Jiao Chen, 2018. "A Study of Trade Complementarity between China and the Baltic States and its Development Strategies," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 20(49), pages 788-788, August.
    11. Wang, Chao & Huang, Xia & Hu, Xiaoqian & Zhao, Longfeng & Liu, Chao & Ghadimi, Pezhman, 2021. "Trade characteristics, competition patterns and COVID-19 related shock propagation in the global solar photovoltaic cell trade," Applied Energy, Elsevier, vol. 290(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Cuixia & Tao, Simin & Su, Bin & Mensah, Isaac Adjei & Sun, Mei, 2023. "Exploring renewable energy trade coopetition relationships: Evidence from belt and road countries, 1996-2018," Renewable Energy, Elsevier, vol. 202(C), pages 196-209.
    2. Xu, Hai-Chuan & Wang, Zhi-Yuan & Jawadi, Fredj & Zhou, Wei-Xing, 2023. "Reconstruction of international energy trade networks with given marginal data: A comparative analysis," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Junlian Gong & Jun Nagayasu, 2025. "What Makes the Oil Pricing Center? The Impact of Futures Markets and Production," TUPD Discussion Papers 71, Graduate School of Economics and Management, Tohoku University.
    4. Kitamura, Toshihiko & Managi, Shunsuke, 2017. "Driving force and resistance: Network feature in oil trade," Applied Energy, Elsevier, vol. 208(C), pages 361-375.
    5. Yan, Jingjing & Guo, Yaoqi & Zhang, Hongwei, 2024. "The dynamic evolution mechanism of structural dependence characteristics in the global oil trade network," Energy, Elsevier, vol. 303(C).
    6. Li, Yonglin & Zuo, Zhili & Cheng, Jinhua & Xu, Deyi, 2024. "Evolutionary characteristics and structural dependence determinants of global lithium trade network: An industry chain perspective," Resources Policy, Elsevier, vol. 99(C).
    7. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    8. Sutrisno, Aziiz & Nomaler, Ӧnder & Alkemade, Floor, 2021. "Has the global expansion of energy markets truly improved energy security?," Energy Policy, Elsevier, vol. 148(PA).
    9. Xi, Xian & Zhou, Jinsheng & Gao, Xiangyun & Liu, Donghui & Zheng, Huiling & Sun, Qingru, 2019. "Impact of changes in crude oil trade network patterns on national economy," Energy Economics, Elsevier, vol. 84(C).
    10. Sun, Qingru & Gao, Xiangyun & Zhong, Weiqiong & Liu, Nairong, 2017. "The stability of the international oil trade network from short-term and long-term perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 345-356.
    11. Wang, Wenya & Fan, L.W. & Zhou, P., 2022. "Evolution of global fossil fuel trade dependencies," Energy, Elsevier, vol. 238(PC).
    12. Ding, Junfeng & Du, Debin & Duan, Dezhong & Xia, Qifan & Zhang, Qiang, 2024. "A network analysis of global competition in photovoltaic technologies: Evidence from patent data," Applied Energy, Elsevier, vol. 375(C).
    13. Wen-Jie Xie & Na Wei & Wei-Xing Zhou, 2020. "Evolving efficiency and robustness of global oil trade networks," Papers 2004.05325, arXiv.org.
    14. Li, Yunting & Liu, Yuxin & Pu, Yue, 2024. "Dynamic changes in the bauxite trade competition network structure and its influencing factors: Based on temporal exponential random graph model," Resources Policy, Elsevier, vol. 95(C).
    15. Yingnan Cong & Yufei Hou & Jiaming Jiang & Shuangzi Chen & Xiaojing Cai, 2023. "Features and Evolution of Global Energy Trade Patterns from the Perspective of Complex Networks," Energies, MDPI, vol. 16(15), pages 1-17, July.
    16. Wang, Wenya & Fan, Liwei & Li, Zhenfu & Zhou, Peng & Chen, Xue, 2021. "Measuring dynamic competitive relationship and intensity among the global coal importing trade," Applied Energy, Elsevier, vol. 303(C).
    17. Wu, Fei & Xiao, Xuanqi & Zhou, Xinyu & Zhang, Dayong & Ji, Qiang, 2022. "Complex risk contagions among large international energy firms: A multi-layer network analysis," Energy Economics, Elsevier, vol. 114(C).
    18. Gao, Cuixia & Tao, Simin & He, Yuyang & Su, Bin & Sun, Mei & Mensah, Isaac Adjei, 2021. "Effect of population migration on spatial carbon emission transfers in China," Energy Policy, Elsevier, vol. 156(C).
    19. Qing Guan & Haizhong An & Xiaoqing Hao & Xiaoliang Jia, 2016. "The Impact of Countries’ Roles on the International Photovoltaic Trade Pattern: The Complex Networks Analysis," Sustainability, MDPI, vol. 8(4), pages 1-16, March.
    20. Kang, Xinyu & Wang, Minxi & Wang, Taixin & Luo, Fanjie & Lin, Jing & Li, Xin, 2022. "Trade trends and competition intensity of international copper flow based on complex network: From the perspective of industry chain," Resources Policy, Elsevier, vol. 79(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1184-:d:1349707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.