IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p657-d1329549.html
   My bibliography  Save this article

A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues

Author

Listed:
  • Pedro Andrade

    (CISE-Electromechatronic Systems Research Centre, University of Beira Interior, Calçada Fonte do Lameiro, P-6201-001 Covilhã, Portugal)

  • Khaled Laadjal

    (CISE-Electromechatronic Systems Research Centre, University of Beira Interior, Calçada Fonte do Lameiro, P-6201-001 Covilhã, Portugal)

  • Adérito Neto Alcaso

    (CISE-Electromechatronic Systems Research Centre, University of Beira Interior, Calçada Fonte do Lameiro, P-6201-001 Covilhã, Portugal
    Polytechnic of Guarda, School of Technology and Management, P-6300-559 Guarda, Portugal)

  • Antonio J. Marques Cardoso

    (CISE-Electromechatronic Systems Research Centre, University of Beira Interior, Calçada Fonte do Lameiro, P-6201-001 Covilhã, Portugal)

Abstract

The complexity of Fuel Cell (FC) systems demands a profound and sustained understanding of the various phenomena occurring inside of it. Thus far, FCs, especially Proton Exchange Membrane Fuel Cells (PEMFCs), have been recognized as being among the most promising technologies for reducing Green House Gas (GHG) emissions because they can convert the chemical energy bonded to hydrogen and oxygen into electricity and heat. However, their efficiency remains limited. To enhance their efficiency, two distinct factors are suggested. First, the quality of materials plays a significant role in the development of more robust and efficient FCs. Second, the ability to identify, mitigate, and reduce the occurrence of faults through the use of robust control algorithms is crucial. Therefore, more focused on the second point, this paper compiles, distinguishes, and analyzes several publications from the past 25 years related to faults and their diagnostic techniques in FCs. Furthermore, the paper presents various schemes outlining different symptoms, their causes, and corresponding fault algorithms.

Suggested Citation

  • Pedro Andrade & Khaled Laadjal & Adérito Neto Alcaso & Antonio J. Marques Cardoso, 2024. "A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues," Energies, MDPI, vol. 17(3), pages 1-45, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:657-:d:1329549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pahon, E. & Yousfi Steiner, N. & Jemei, S. & Hissel, D. & Moçoteguy, P., 2016. "A signal-based method for fast PEMFC diagnosis," Applied Energy, Elsevier, vol. 165(C), pages 748-758.
    2. Zhang, Xiaojie & Zhang, Tong & Chen, Huicui & Cao, Yinliang, 2021. "A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 286(C).
    3. Sutharssan, Thamo & Montalvao, Diogo & Chen, Yong Kang & Wang, Wen-Chung & Pisac, Claudia & Elemara, Hakim, 2017. "A review on prognostics and health monitoring of proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 440-450.
    4. Pu, Zonghua & Zhang, Gaixia & Hassanpour, Amir & Zheng, Dewen & Wang, Shanyu & Liao, Shijun & Chen, Zhangxin & Sun, Shuhui, 2021. "Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system," Applied Energy, Elsevier, vol. 283(C).
    5. Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Jemei, Samir & Giraud, Alain & Rosini, Sebastien, 2016. "Online implementation of SVM based fault diagnosis strategy for PEMFC systems," Applied Energy, Elsevier, vol. 164(C), pages 284-293.
    6. Song Yan & Mingyang Yang & Chuanyu Sun & Sichuan Xu, 2023. "Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method," Energies, MDPI, vol. 16(16), pages 1-18, August.
    7. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
    8. Kim, Kyunghyun & Kim, Jaeyeon & Choi, Heesoo & Kwon, Obeen & Jang, Yujae & Ryu, Sangbong & Lee, Heeyun & Shim, Kyuhwan & Park, Taehyun & Cha, Suk Won, 2023. "Pre-diagnosis of flooding and drying in proton exchange membrane fuel cells by bagging ensemble deep learning models using long short-term memory and convolutional neural networks," Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Park, Jin & Seop Lim, In & Ho Lee, Yeong & Lee, Won-Yong & Oh, Hwanyeong & Soo Kim, Min, 2023. "Severity-based fault diagnostic method for polymer electrolyte membrane fuel cell systems," Applied Energy, Elsevier, vol. 332(C).
    2. Behzad Najafi & Paolo Bonomi & Andrea Casalegno & Fabio Rinaldi & Andrea Baricci, 2020. "Rapid Fault Diagnosis of PEM Fuel Cells through Optimal Electrochemical Impedance Spectroscopy Tests," Energies, MDPI, vol. 13(14), pages 1-19, July.
    3. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    4. Chen, Huicui & Zhao, Xin & Qu, Bingwang & Zhang, Tong & Pei, Pucheng & Li, Congxin, 2018. "An evaluation method of gas distribution quality in dynamic process of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 232(C), pages 26-35.
    5. Oh, Hwanyeong & Lee, Won-Yong & Won, Jinyeon & Kim, Minjin & Choi, Yoon-Young & Han, Soo-Bin, 2020. "Residual-based fault diagnosis for thermal management systems of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 277(C).
    6. Rocha, A. & Ferreira, R.B. & Falcão, D.S. & Pinto, A.M.F.R., 2023. "Experimental study on a unitized regenerative fuel cell operated in constant electrode mode: Effect of cell design and operating conditions," Renewable Energy, Elsevier, vol. 215(C).
    7. Nicolas Muck & Christoph David, 2023. "Integrating Fiber Sensing for Spatially Resolved Temperature Measurement in Fuel Cells," Energies, MDPI, vol. 17(1), pages 1-17, December.
    8. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    9. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    10. Yao, Yue & Ma, Yue & Wang, Chenpeng & Ye, Hao & Liu, Yinglong & Liu, Jiawei & Zhao, Xiaobo & Tao, Tao & Yao, Yingbang & Lu, Shengguo & Yang, Huazheng & Liang, Bo, 2022. "A cofuel channel microtubular solid oxide fuel/electrolysis cell," Applied Energy, Elsevier, vol. 327(C).
    11. Teng Teng & Xin Zhang & Qicheng Xue & Baodi Zhang, 2024. "Research of Proton Exchange Membrane Fuel Cell Modeling on Concentration Polarization under Variable-Temperature Operating Conditions," Energies, MDPI, vol. 17(3), pages 1-17, February.
    12. Gao, Q.W. & Liu, W.Y. & Tang, B.P. & Li, G.J., 2018. "A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multiscale entropy and least squares support vector machine," Renewable Energy, Elsevier, vol. 116(PA), pages 169-175.
    13. Xuexia Zhang & Zixuan Yu & Weirong Chen, 2019. "Life Prediction Based on D-S ELM for PEMFC," Energies, MDPI, vol. 12(19), pages 1-15, September.
    14. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    15. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    16. Li, Haolong & Chen, Qihong & Zhang, Liyan & Liu, Li & Xiao, Peng, 2023. "Degradation prediction of proton exchange membrane fuel cell based on the multi-inputs Bi-directional long short-term memory," Applied Energy, Elsevier, vol. 344(C).
    17. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2021. "Working zone for a least-squares support vector machine for modeling polymer electrolyte fuel cell voltage," Applied Energy, Elsevier, vol. 283(C).
    18. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    19. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    20. Lyubov Slotyuk & Florian Part & Moritz-Caspar Schlegel & Floris Akkerman, 2024. "Life Cycle Assessment of the Domestic Micro Heat and Power Generation Proton Exchange Membrane Fuel Cell in Comparison with the Gas Condensing Boiler Plus Electricity from the Grid," Sustainability, MDPI, vol. 16(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:657-:d:1329549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.