IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p16-d1303352.html
   My bibliography  Save this article

Integrating Fiber Sensing for Spatially Resolved Temperature Measurement in Fuel Cells

Author

Listed:
  • Nicolas Muck

    (Department of Vehicle Energy Concepts, DLR-Institute of Vehicle Concepts, 70569 Stuttgart, Germany)

  • Christoph David

    (Department of Vehicle Energy Concepts, DLR-Institute of Vehicle Concepts, 70569 Stuttgart, Germany)

Abstract

Fiber optic sensors integrated into fuel cell stacks have the potential to significantly enhance the temperature control and health monitoring of fuel cells. Inhomogeneous loading, both within individual cells and across different cells in a stack, leads to the formation of local hotspots that accelerate aging and degrade performance. This study investigates the behavior and feasibility of incorporating polyimide-coated optical fiber sensors into bipolar plates for precise and spatially resolved temperature monitoring. The sensor is successfully integrated into a single cell of a fuel cell stack, positioned on the bipolar plate in direct contact with the membrane. Pre-tests are conducted to thoroughly evaluate the technical properties of the fiber in relation to specific cell requirements. Additionally, a physical prototype featuring the sensor is developed and employed to validate its effectiveness under realistic operating conditions. The temperature measurement obtained via the fiber exhibits a continuous profile throughout the entire length, covering both the active area and distributor region of the cell. Throughout the entire 60 min test period, the measuring system provided continuous and uninterrupted temperature measurements, encompassing the start of the stack, the heating phase, the subsequent stable operating point, and the cooling phase. However, some technical challenges are identified, as mechanical pressure exerted on the fiber influences the measured temperature. While this work demonstrates promising results, further advancements are necessary to address inhomogeneous loading within fuel cells and hotspot mitigation. The precise monitoring of temperature distribution enables early detection of potential damage, facilitating timely interventions to improve the service life and overall performance of fuel cells.

Suggested Citation

  • Nicolas Muck & Christoph David, 2023. "Integrating Fiber Sensing for Spatially Resolved Temperature Measurement in Fuel Cells," Energies, MDPI, vol. 17(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:16-:d:1303352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang, Zhenye & Wang, Hao & Liu, Yanrong & Mo, Jingke & Wang, Min & Li, Jing & Tian, Xinlong, 2022. "Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices," Applied Energy, Elsevier, vol. 317(C).
    2. Song Yan & Mingyang Yang & Chuanyu Sun & Sichuan Xu, 2023. "Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method," Energies, MDPI, vol. 16(16), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teng Teng & Xin Zhang & Qicheng Xue & Baodi Zhang, 2024. "Research of Proton Exchange Membrane Fuel Cell Modeling on Concentration Polarization under Variable-Temperature Operating Conditions," Energies, MDPI, vol. 17(3), pages 1-17, February.
    2. Lyubov Slotyuk & Florian Part & Moritz-Caspar Schlegel & Floris Akkerman, 2024. "Life Cycle Assessment of the Domestic Micro Heat and Power Generation Proton Exchange Membrane Fuel Cell in Comparison with the Gas Condensing Boiler Plus Electricity from the Grid," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    3. Gojmir Radica & Ivan Tolj & Mykhaylo V. Lototskyy & Sivakumar Pasupathi, 2023. "Air Mass Flow and Pressure Optimization of a PEM Fuel Cell Hybrid System for a Forklift Application," Energies, MDPI, vol. 17(1), pages 1-18, December.
    4. Xiangyang Chen & Xianglong Luo & Chao Wang & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2024. "Channel-to-Rib Width Ratio Optimization for the Electrical Performance Enhancement in PEMFC Based on Accurate Strain-Stress Simulation," Energies, MDPI, vol. 17(3), pages 1-28, February.
    5. Pandu Ranga Tirumalasetti & Fang-Bor Weng & Mangaliso Menzi Dlamini & Chia-Hung Chen, 2024. "Numerical Simulation of Double Layered Wire Mesh Integration on the Cathode for a Proton Exchange Membrane Fuel Cell (PEMFC)," Energies, MDPI, vol. 17(2), pages 1-15, January.
    6. Anand Sagar & Sachin Chugh & Erik Kjeang, 2023. "Model-Driven Membrane Electrode Assembly Design for High-Performing Open-Cathode Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 16(22), pages 1-23, November.
    7. Zhanhui Yao & Wei Qi & Jia Wang & Zhensen Ding & Xiaolong Jiang & Yingchen Hong & Yuejuan Li, 2023. "Safety Risk and Strategy Analysis of On-Board Hydrogen System of Hydrogen Fuel Cell Vehicles in China," Energies, MDPI, vol. 16(23), pages 1-11, November.
    8. Pedro Andrade & Khaled Laadjal & Adérito Neto Alcaso & Antonio J. Marques Cardoso, 2024. "A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues," Energies, MDPI, vol. 17(3), pages 1-45, January.
    9. Maximilian Schmitz & Fynn Matthiesen & Steffen Dirkes & Stefan Pischinger, 2024. "Predicting Liquid Water Condensation in PEM Fuel Cells by Coupling CFD with 1D Models," Energies, MDPI, vol. 17(5), pages 1-18, March.
    10. Ireneusz Pielecha & Filip Szwajca & Kinga Skobiej, 2023. "Load Capacity of Nickel–Metal Hydride Battery and Proton-Exchange-Membrane Fuel Cells in the Fuel-Cell-Hybrid-Electric-Vehicle Powertrain," Energies, MDPI, vol. 16(22), pages 1-14, November.
    11. Shi, Tong & Feng, Hao & Liu, Dong & Zhang, Ying & Li, Qiang, 2022. "High-performance microfluidic electrochemical reactor for efficient hydrogen evolution," Applied Energy, Elsevier, vol. 325(C).
    12. Dan Wang & Haitao Min & Honghui Zhao & Weiyi Sun & Bin Zeng & Qun Ma, 2024. "A Data-Driven Prediction Method for Proton Exchange Membrane Fuel Cell Degradation," Energies, MDPI, vol. 17(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:16-:d:1303352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.