IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6460-d1549785.html
   My bibliography  Save this article

Analysis of Greenhouse Gas Emissions and Energy Consumption Depending on the Material and Construction Solutions and the Energy Carrier Used—A Case Study

Author

Listed:
  • Grzegorz Nawalany

    (Department of Rural Building, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland)

  • Paweł Sokołowski

    (Department of Rural Building, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland)

  • Tomasz Jakubowski

    (Department of Machine Operation, Ergonomics and Production Processes, Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-059 Krakow, Poland)

  • Atilgan Atilgan

    (Department of Biosystems Engineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, 07425 Alanya, Turkey)

Abstract

The article presents the results of research on the impact of material and construction solutions on energy demand and greenhouse gas emissions. Field research was conducted in an existing free-standing greenhouse located in southern Poland. The research period covered the entire calendar year. The measurement data were used in the next step to validate the computational model using the numerical method of elementary balances. The data distribution was also analyzed in terms of basic statistics. The validated and verified model was used in the further part of the analysis to conduct computer simulations for three variants, differing in terms of material and construction solutions. The variants included: no foundation insulation, extruded polystyrene (XPS) insulation and the use of single-chamber polycarbonate panels with thermal insulation of the foundations. The obtained results showed a high agreement between theoretical and real data (85–89% for the coefficient of determination (R 2 ) and 84–88% for the GOF method). In the case of variant 1, which in terms of material and construction solutions corresponded to the actual construction of the greenhouse, it was found that the annual energy demand for heating purposes amounted to 153,234 kWh/year. In variant 2, in which additional thermal insulation relative to the zero state was used, the energy demand for heating purposes was lower and amounted to 147,704 kWh/year. The lowest heat load was characteristic of variant 3, in which 116,294 kWh/year was required to cover heating needs. The variant with polycarbonate and foundation insulation brought energy savings of 24% and a reduction of CO 2 emissions by 24%. In addition, replacing fuel from hard coal with natural gas brought significant benefits, reducing pollutant emissions by 51%. The paper is a new approach to the use of the mentioned numerical method for the assessment of gaseous pollutant emissions in this type of building based on numerical simulations of energy consumption.

Suggested Citation

  • Grzegorz Nawalany & Paweł Sokołowski & Tomasz Jakubowski & Atilgan Atilgan, 2024. "Analysis of Greenhouse Gas Emissions and Energy Consumption Depending on the Material and Construction Solutions and the Energy Carrier Used—A Case Study," Energies, MDPI, vol. 17(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6460-:d:1549785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    2. Matthias Pazold & Jan Radon & Matthias Kersken & Hartwig Künzel & Florian Antretter & Herbert Sinnesbichler, 2023. "Development and Verification of Novel Building Integrated Thermal Storage System Models," Energies, MDPI, vol. 16(6), pages 1-21, March.
    3. Robaina-Alves, Margarita & Moutinho, Victor, 2014. "Decomposition of energy-related GHG emissions in agriculture over 1995–2008 for European countries," Applied Energy, Elsevier, vol. 114(C), pages 949-957.
    4. Moomaw, William R, 1996. "Industrial emissions of greenhouse gases," Energy Policy, Elsevier, vol. 24(10-11), pages 951-968.
    5. Costantino, Andrea & Comba, Lorenzo & Sicardi, Giacomo & Bariani, Mauro & Fabrizio, Enrico, 2021. "Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation," Applied Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    2. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    3. Hu, Yi & Yin, Zhifeng & Ma, Jian & Du, Wencui & Liu, Danhe & Sun, Luxi, 2017. "Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing," Applied Energy, Elsevier, vol. 196(C), pages 162-169.
    4. Bakari, Sayef & Tiba, Sofien, 2020. "Does Agricultural Investment Still Promote Economic Growth in China? Empirical Evidence from ARDL Bounds Testing Model," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 8(4), October.
    5. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    6. Alajmi, Reema Gh, 2021. "Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI," Energy Policy, Elsevier, vol. 156(C).
    7. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    8. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
    9. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    10. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, vol. 7(12), pages 1-21, December.
    11. Xu, Bin & Lin, Boqiang, 2017. "Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model," Energy Policy, Elsevier, vol. 104(C), pages 404-414.
    12. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    13. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2019. "Global levelised cost of electricity from offshore wind," Energy, Elsevier, vol. 189(C).
    14. Su, Meirong & Pauleit, Stephan & Yin, Xuemei & Zheng, Ying & Chen, Shaoqing & Xu, Chao, 2016. "Greenhouse gas emission accounting for EU member states from 1991 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 759-768.
    15. El-Fadel, M. & Zeinati, M. & Ghaddar, N. & Mezher, T., 2001. "Uncertainty in estimating and mitigating industrial related GHG emissions," Energy Policy, Elsevier, vol. 29(12), pages 1031-1043, October.
    16. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
    17. Chul-sung Lee & Hyungjin Shin & Changi Park & Mi-Lan Park & Young Choi, 2023. "Economic Feasibility Analysis of Greenhouse–Fuel Cell Convergence Systems," Sustainability, MDPI, vol. 16(1), pages 1-14, December.
    18. Lin, Boqiang & Xu, Bin, 2018. "Factors affecting CO2 emissions in China's agriculture sector: A quantile regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 15-27.
    19. Shekaina Justin & Wafaa Saleh & Maha M. A. Lashin & Hind Mohammed Albalawi, 2023. "Modeling of Artificial Intelligence-Based Automated Climate Control with Energy Consumption Using Optimal Ensemble Learning on a Pixel Non-Uniformity Metro System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    20. Wang, Shaobin & Liu, Haimeng & Pu, Haixia & Yang, Hao, 2020. "Spatial disparity and hierarchical cluster analysis of final energy consumption in China," Energy, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6460-:d:1549785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.