IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v96y2024ipas1059056024004933.html
   My bibliography  Save this article

Temporal and spatial characteristics of carbon emissions from cultivated land use and their influencing factors: A case study of the Yangtze River Delta region

Author

Listed:
  • Bai, Jiangyao
  • Chen, Haixin
  • Gu, Xiang
  • Ji, Yuqun
  • Zhu, Xiaodan

Abstract

This study focuses on the Yangtze River Delta region and employs spatial analysis and geographically and temporally weighted regression (GTWR) to explore the temporal and spatial characteristics of carbon emissions from cultivated land use and their influencing factors. The findings indicate that carbon emissions from cultivated land use in the Yangtze River Delta generally show a decreasing trend, but there has been a significant increase in Anhui Province, mainly due to government efforts to promote agricultural development. Additionally, the spatial distributions of carbon emissions from cultivated land use clearly differ in terms of proximity, with changing temporal and spatial patterns. (1) From 2005 to 2020, there were significant spatial differences in the carbon emission intensity from cultivated land use across the Yangtze River Delta. The emission intensities in the southern areas were generally higher than those in the northeastern and central regions, whereas the western areas presented lower emission intensities. (2) The carbon emission intensity from cultivated land use in the Yangtze River Delta exhibited significant spatial proximity, meaning that neighboring areas had similar emission intensities, presenting a continuous distribution pattern. Contiguous distributions were also observed in parts of northern Anhui, central Jiangsu, and southeastern Zhejiang. (3) The carbon emission intensity from cultivated land use in the Yangtze River Delta showed a trend of high-intensity reductions and low-intensity increases over time and space. The level of agricultural development, scale of farmland management, types of crops planted, income levels of rural residents, intensity of agricultural machinery input, and strength of agricultural financial support significantly impact carbon emissions from cultivated land use. The results provide important references and a theoretical basis for the management and regulation of agricultural carbon emissions in the Yangtze River Delta region.

Suggested Citation

  • Bai, Jiangyao & Chen, Haixin & Gu, Xiang & Ji, Yuqun & Zhu, Xiaodan, 2024. "Temporal and spatial characteristics of carbon emissions from cultivated land use and their influencing factors: A case study of the Yangtze River Delta region," International Review of Economics & Finance, Elsevier, vol. 96(PA).
  • Handle: RePEc:eee:reveco:v:96:y:2024:i:pa:s1059056024004933
    DOI: 10.1016/j.iref.2024.103501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056024004933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2024.103501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aihui Ma & Yu Wu, 2022. "Total factor productivity of land urbanization under carbon emission constraints: a case study of Chengyu urban agglomeration in China," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 4481-4499, December.
    2. Daichao Li & Kunkun Fan & Jiaqi Lu & Sheng Wu & Xiaowei Xie, 2022. "Research on Spatio-Temporal Pattern Evolution and the Coupling Coordination Relationship of Land-Use Benefit from a Low-Carbon Perspective: A Case Study of Fujian Province," Land, MDPI, vol. 11(9), pages 1-24, September.
    3. Kuang, Bing & Lu, Xinhai & Zhou, Min & Chen, Danling, 2020. "Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    4. Robaina-Alves, Margarita & Moutinho, Victor, 2014. "Decomposition of energy-related GHG emissions in agriculture over 1995–2008 for European countries," Applied Energy, Elsevier, vol. 114(C), pages 949-957.
    5. Khadiza Begum & Matthias Kuhnert & Jagadeesh Yeluripati & Stephen Ogle & William Parton & Md Abdul Kader & Pete Smith, 2018. "Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh," Land, MDPI, vol. 7(3), pages 1-18, July.
    6. Eleni Zafeiriou & Ioannis Mallidis & Konstantinos Galanopoulos & Garyfallos Arabatzis, 2018. "Greenhouse Gas Emissions and Economic Performance in EU Agriculture: An Empirical Study in a Non-Linear Framework," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    7. Hongpeng Guo & Sidong Xie & Chulin Pan, 2021. "The Impact of Planting Industry Structural Changes on Carbon Emissions in the Three Northeast Provinces of China," IJERPH, MDPI, vol. 18(2), pages 1-20, January.
    8. Qiuyue Xia & Lu Li & Bin Zhang & Jie Dong, 2022. "Nonlinear Influence of Land-Use Transition on Carbon Emission Transfer: A Threshold Regression Analysis of the Middle Reaches of the Yangtze River in China," Land, MDPI, vol. 11(9), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongpeng Guo & Boqun Fan & Chulin Pan, 2021. "Study on Mechanisms Underlying Changes in Agricultural Carbon Emissions: A Case in Jilin Province, China, 1998–2018," IJERPH, MDPI, vol. 18(3), pages 1-17, January.
    2. Yongrok Choi & Hyoungsuk Lee & Hojin Jeong & Jahira Debbarma, 2023. "Urbanization Paradox of Environmental Policies in Korean Local Governments," Land, MDPI, vol. 12(2), pages 1-15, February.
    3. Shuting Liu & Junsong Jia & Hanzhi Huang & Dilan Chen & Yexi Zhong & Yangming Zhou, 2023. "China’s CO 2 Emissions: A Thorough Analysis of Spatiotemporal Characteristics and Sustainable Policy from the Agricultural Land-Use Perspective during 1995–2020," Land, MDPI, vol. 12(6), pages 1-20, June.
    4. Kerstin Jantke & Martina J. Hartmann & Livia Rasche & Benjamin Blanz & Uwe A. Schneider, 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers," Land, MDPI, vol. 9(5), pages 1-13, April.
    5. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
    6. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, vol. 7(12), pages 1-21, December.
    7. Hao Su & Shuo Yang, 2022. "Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    8. Guangyan Ran & Guangyao Wang & Huijuan Du & Mi Lv, 2023. "Relationship of Cooperative Management and Green and Low-Carbon Transition of Agriculture and Its Impacts: A Case Study of the Western Tarim River Basin," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    9. Yihui Chen & Minjie Li & Kai Su & Xiaoyong Li, 2019. "Spatial-Temporal Characteristics of the Driving Factors of Agricultural Carbon Emissions: Empirical Evidence from Fujian, China," Energies, MDPI, vol. 12(16), pages 1-23, August.
    10. Luo Muchen & Rosita Hamdan & Rossazana Ab-Rahim, 2022. "Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    11. Su, Meirong & Pauleit, Stephan & Yin, Xuemei & Zheng, Ying & Chen, Shaoqing & Xu, Chao, 2016. "Greenhouse gas emission accounting for EU member states from 1991 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 759-768.
    12. Jinlong Chen & Zhonglei Yu & Mengxia Li & Xiao Huang, 2023. "Assessing the Spatiotemporal Dynamics of Vegetation Coverage in Urban Built-Up Areas," Land, MDPI, vol. 12(1), pages 1-17, January.
    13. Eleni Zafeiriou & Spyridon Galatsidas & Garyfallos Arabatzis & Stavros Tsiantikoudis & Athanasios Batzios, 2023. "Environmental Degradation by Energy–Economic Growth Interlinkages in EU Agriculture," Energies, MDPI, vol. 16(9), pages 1-14, May.
    14. Lin, Boqiang & Xu, Bin, 2018. "Factors affecting CO2 emissions in China's agriculture sector: A quantile regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 15-27.
    15. Mengchao Yao & Yihua Zhang, 2021. "Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    16. Georgiana Moiceanu & Mirela Nicoleta Dinca, 2021. "Climate Change-Greenhouse Gas Emissions Analysis and Forecast in Romania," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    17. Xiao Lu & Yi Qu & Piling Sun & Wei Yu & Wenlong Peng, 2020. "Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation," Land, MDPI, vol. 9(12), pages 1-22, November.
    18. Kun Zeng & Xiong Duan & Bin Chen & Lanxi Jia, 2025. "Spatiotemporal Heterogeneity of Eco-Efficiency of Cultivated Land Use and Its Influencing Factors: Evidence from the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 17(7), pages 1-23, March.
    19. Xie, Hualin & Huang, Yingqian & Choi, Yongrok & Shi, Jiaying, 2021. "Evaluating the sustainable intensification of cultivated land use based on emergy analysis," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    20. Shuping Fan & Boping Yu & Juan Yue & Yishi Mi & Jiaru Cheng & Ran Yu & Xingwu Xi, 2023. "A Study on the Measurement of Comparative Advantage of Land Use Efficiency, Spatiotemporal Heterogeneity and Its Influencing Factors—An Empirical Test from the Panel Data of China’s Provincial Sub-Ind," Sustainability, MDPI, vol. 15(9), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:96:y:2024:i:pa:s1059056024004933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.