Author
Listed:
- Stefano Cascone
(Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia, 64, 95125 Catania, Italy)
- Valeria Anastasi
(Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia, 64, 95125 Catania, Italy)
- Rosa Caponetto
(Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia, 64, 95125 Catania, Italy)
Abstract
In response to the growing demand for sustainable and performance-driven building design, this study proposes an integrated digital methodology that combines Building Information Modeling (BIM), parametric scripting, and multi-criteria decision-making (MCDM) to optimize external wall assemblies. The approach leverages Autodesk Revit and Dynamo to automate the parametrization of insulation thickness while ensuring compliance with regulatory thresholds for thermal transmittance and surface mass. Acoustic performance is estimated using ECHO software, and a Weighted Sum Model (WSM) is applied to evaluate and rank configurations based on four criteria: economic cost, Global Warming Potential (GWP), embodied energy, and acoustic insulation. A case study involving 24 wall assemblies—generated from eight base stratigraphies and three insulation materials—demonstrates the method’s ability to balance environmental impact, occupant comfort, and construction feasibility. The results indicate that natural and bio-based materials, such as rammed earth and cork, offer the best overall performance, while conventional systems remain competitive in terms of cost. The proposed workflow reduces design time, increases transparency, and supports informed decision-making during early design stages. This research contributes to the digitalization of sustainability assessment in architecture by promoting integrative, replicable, and regulation-aligned practices for low-impact building envelopes.
Suggested Citation
Stefano Cascone & Valeria Anastasi & Rosa Caponetto, 2025.
"Performance Optimization of Building Envelope Through BIM and Multi-Criteria Analysis,"
Sustainability, MDPI, vol. 17(12), pages 1-26, June.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:12:p:5294-:d:1674367
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5294-:d:1674367. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.