Author
Listed:
- Annamaria Ciccozzi
(Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale Pontieri 1, Monteluco di Roio, 67100 L’Aquila, Italy)
- Tullio de Rubeis
(Department of Civil, Construction-Architectural and Environmental Engineering, University of L’Aquila, Piazzale Pontieri 1, Monteluco di Roio, 67100 L’Aquila, Italy)
- Yun Ii Go
(School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, 1, Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Wilayah Persekutuan Putrajaya, Malaysia)
- Dario Ambrosini
(Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale Pontieri 1, Monteluco di Roio, 67100 L’Aquila, Italy)
Abstract
One of the goals of Agenda 2030 is to increase the share of renewable energy in the global energy mix. In this context, photovoltaic systems play a key role in the transition to clean energy. According to the International Energy Agency, in 2023, solar photovoltaic alone accounted for three-quarters of renewable capacity additions worldwide. Designing a performing photovoltaic system requires careful planning that takes into account various factors, both internal and external, in order to maximize energy production and optimize costs. In addition to the technical characteristics of the system (internal factors), the positions and the shapes of external buildings and surrounding obstacles (external factors) have a significant impact on the output of photovoltaic systems. However, given the complexity of these environmental factors, they cannot be treated accurately in manual design practice. For this reason, this paper proposes a Building Information Modeling-based workflow for the design of a photovoltaic system that can guide the professional step-by-step throughout the design process, starting from the embryonic phase to the definitive, and therefore more detailed, one. The developed methodology allows for an in-depth analysis of the shading, the photovoltaic potential of the building, the performance of the photovoltaic system, and the costs for its construction in order to evaluate the appropriateness of the investment. The main aim of the paper is to create a standardized procedure applicable on a large scale for photovoltaic integration within Building Information Modeling workflows. The methodology is tested on two case studies, characterized by different architectural features and geographical positions.
Suggested Citation
Annamaria Ciccozzi & Tullio de Rubeis & Yun Ii Go & Dario Ambrosini, 2025.
"PV System Design in Different Climates: A BIM-Based Methodology,"
Energies, MDPI, vol. 18(14), pages 1-28, July.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:14:p:3866-:d:1705921
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3866-:d:1705921. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.