Matching Electricity Footprint of Commercial Customers to Industry-Specific Profiles for Enhanced Power Management
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Faruqui, Ahmad & Hledik, Ryan & Newell, Sam & Pfeifenberger, Hannes, 2007. "The Power of 5 Percent," The Electricity Journal, Elsevier, vol. 20(8), pages 68-77, October.
- Tomasz Ząbkowski & Krzysztof Gajowniczek & Grzegorz Matejko & Jacek Brożyna & Grzegorz Mentel & Małgorzata Charytanowicz & Jolanta Jarnicka & Anna Olwert & Weronika Radziszewska & Jörg Verstraete, 2023. "Cluster-Based Approach to Estimate Demand in the Polish Power System Using Commercial Customers’ Data," Energies, MDPI, vol. 16(24), pages 1-21, December.
- Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
- Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
- Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
- Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014.
"A Review of Renewable Energy Supply and Energy Efficiency Technologies,"
IZA Discussion Papers
8145, Institute of Labor Economics (IZA).
- Abolhosseini, Shahrouz & Heshmati, Almas´ & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," Working Paper Series in Economics and Institutions of Innovation 374, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
- Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
- Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
- Kwonsik Song & Kyle Anderson & SangHyun Lee & Kaitlin T. Raimi & P. Sol Hart, 2020. "Non-Invasive Behavioral Reference Group Categorization Considering Temporal Granularity and Aggregation Level of Energy Use Data," Energies, MDPI, vol. 13(14), pages 1-21, July.
- Wang, Lei & Wang, Xinyu & Zhao, Zhongchao, 2024. "Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression," Energy, Elsevier, vol. 304(C).
- Russo, Marianna & Bertsch, Valentin, 2020.
"A looming revolution: Implications of self-generation for the risk exposure of retailers,"
Energy Economics, Elsevier, vol. 92(C).
- Russo, Marianna & Bertsch, Valentin, 2018. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Papers WP597, Economic and Social Research Institute (ESRI).
- Serra, Adrià & Ortiz, Alberto & Cortés, Pau Joan & Canals, Vincent, 2025. "Explainable district heating load forecasting by means of a reservoir computing deep learning architecture," Energy, Elsevier, vol. 318(C).
- Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
- Yuan, Jianjuan & Huang, Ke & Han, Zhao & Zhou, Zhihua & Lu, Shilei, 2021. "A new feedback predictive model for improving the operation efficiency of heating station based on indoor temperature," Energy, Elsevier, vol. 222(C).
- Song, Jiancai & Wang, Kangning & Bian, Tianxiang & Li, Wen & Dong, Qianxing & Chen, Lei & Xue, Guixiang & Wu, Xiangdong, 2025. "A novel heat load prediction algorithm based on fuzzy C-mean clustering and mixed positional encoding informer," Applied Energy, Elsevier, vol. 388(C).
- Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014.
"The Effect of Renewable Energy Development on Carbon Emission Reduction: An Empirical Analysis for the EU-15 Countries,"
IZA Discussion Papers
7989, Institute of Labor Economics (IZA).
- Shahrouz Abolhosseini & Almas Heshmati & Jorn Altmann, 2014. "The Effect of Renewable Energy Development on Carbon Emission Reduction: An Empirical Analysis for the EU-15 Countries," TEMEP Discussion Papers 2014109, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2014.
- Vanessa Zawodnik & Florian Christian Schwaiger & Christoph Sorger & Thomas Kienberger, 2024. "Tackling Uncertainty: Forecasting the Energy Consumption and Demand of an Electric Arc Furnace with Limited Knowledge on Process Parameters," Energies, MDPI, vol. 17(6), pages 1-19, March.
- Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
- Elamin, Niematallah & Fukushige, Mototsugu, 2018.
"Modeling and forecasting hourly electricity demand by SARIMAX with interactions,"
Energy, Elsevier, vol. 165(PB), pages 257-268.
- Niematallah Elamin & Mototsugu Fukushige, 2017. "Modeling and Forecasting Hourly Electricity Demand by SARIMAX with Interactions," Discussion Papers in Economics and Business 17-28, Osaka University, Graduate School of Economics.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6120-:d:1536968. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.