IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5276-d1504924.html
   My bibliography  Save this article

A Multi-Functional Integrated Onboard Charger for Dual-Motor Driving EVs

Author

Listed:
  • Minghao Tong

    (School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China)

  • Xiaoqiang Liu

    (School of Automation, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China)

  • Yudong Chen

    (School of Automation, Nanjing University of Science & Technology, Nanjing 210094, China)

  • Le Sun

    (School of Automation, Nanjing University of Science & Technology, Nanjing 210094, China)

  • Zhiyuan Xu

    (School of Electrical Engineering, Southeast University, Nanjing 210018, China)

Abstract

In this paper, to achieve versatile, cost-effective charging for dual-motor EVs, a multi-functional integrated onboard charger is constructed using a dual-motor driving system. In the driving mode, a five-phase flux-switching permanent-magnet (FSPM) motor powers the front, while a three-phase FSPM motor drives the rear. While in the charging mode, different topologies are adopted for different application scenarios, such as the single-phase AC charging mode, the three-phase AC charging mode, and the DC charging mode. The five-phase FSPM motor and its inverters serve as a boost-based AC/DC converter in both single-phase and three-phase AC charging modes, transforming grid power to DC. In the DC charging mode, they are reconfigured to function as a buck converter. During the three-phase AC charging mode, the three-phase FSPM motor and its inverters take on the role of a rear-stage buck converter. They function to regulate the rectified DC voltage, ensuring it meets battery charging needs. The performance of the integrated charger is validated through simulation and experiment results.

Suggested Citation

  • Minghao Tong & Xiaoqiang Liu & Yudong Chen & Le Sun & Zhiyuan Xu, 2024. "A Multi-Functional Integrated Onboard Charger for Dual-Motor Driving EVs," Energies, MDPI, vol. 17(21), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5276-:d:1504924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Yue & Chai, Jian & Tian, Lingyue & Zhang, Xiaokong & Wang, Jiaoyan, 2024. "Regional inequality in China's electricity trade," Energy, Elsevier, vol. 313(C).
    2. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Zengkai Zhang & Jiaoyan Li & Dabo Guan, 2023. "Value chain carbon footprints of Chinese listed companies," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Zhao, Ke-Xin & Xu, Fei-Ran & Zhou, Yan & Ma, Tao, 2024. "The heterogeneous effects of non-hydro renewable energy and water resources on industrial development of the Yellow river and Yangtze river basins," Energy, Elsevier, vol. 301(C).
    5. Li, Zepeng & Wu, Qiuwei & Li, Hui & Nie, Chengkai & Tan, Jin, 2024. "Distributed low-carbon economic dispatch of integrated power and transportation system," Applied Energy, Elsevier, vol. 353(PA).
    6. Yihan Wang & Chen Chen & Yuan Tao & Zongguo Wen, 2025. "Uneven renewable energy supply constrains the decarbonization effects of excessively deployed hydrogen-based DRI technology," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Zhang, Hongyu & Deji, Wangzhen & Farinotti, Daniel & Zhang, Da & Huang, Junling, 2024. "The role of Xizang in China's transition towards a carbon-neutral power system," Energy, Elsevier, vol. 313(C).
    8. Yao, En-jian & Zhang, Tian-yu & Wang, David Z.W. & Zhang, Jun-yi, 2024. "Dynamic planning and decarbonization pathways of the highway power supply network," Applied Energy, Elsevier, vol. 376(PB).
    9. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    10. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    11. Zhang, Yun-Long & Kang, Jia-Ning & Liu, Lan-Cui & Wei, Yi-Ming, 2024. "Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry," Applied Energy, Elsevier, vol. 371(C).
    12. Guo, Zhi & Mao, Xianqiang & Lu, Jianhong & Gao, Yubing & Chen, Xing & Zhang, Shining & Ma, Zhiyuan, 2024. "Can a new power system create more employment in China?," Energy, Elsevier, vol. 295(C).
    13. Ai, Hongshan & Tan, Xiaoqing & Mangla, Sachin Kumar & Emrouznejad, Ali & Liu, Fan & Song, Malin, 2025. "Renewable energy transition and sustainable development: Evidence from China," Energy Economics, Elsevier, vol. 143(C).
    14. Yang, Mao & Han, Chao & Zhang, Wei & Wang, Bo, 2024. "A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information," Energy, Elsevier, vol. 294(C).
    15. Wang, Aijia & Wang, Junqi & Zhang, Ruijun & Cao, Shi-Jie, 2024. "Mitigating urban heat and air pollution considering green and transportation infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    16. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    17. Wang, Han & Zhang, Jiawei & Wang, Peng & Zhang, Ning, 2025. "The role of demand-side flexibilities on low-carbon transition in power system: A case study of West Inner Mongolia, China," Renewable Energy, Elsevier, vol. 242(C).
    18. Jiang, Haiyang & Du, Ershun & He, Boyu & Zhang, Ning & Wang, Peng & Li, Fuqiang & Ji, Jie, 2023. "Analysis and modeling of seasonal characteristics of renewable energy generation," Renewable Energy, Elsevier, vol. 219(P1).
    19. Kai Jiang & Nian Liu & Kunyu Wang & Yubing Chen & Jianxiao Wang & Yu Liu, 2025. "Spatiotemporal assessment of renewable adequacy during diverse extreme weather events in China," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    20. Yuan, Hong & Ma, Minda & Zhou, Nan & Xie, Hui & Ma, Zhili & Xiang, Xiwang & Ma, Xin, 2024. "Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s," Applied Energy, Elsevier, vol. 365(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5276-:d:1504924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.