IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4367-d1468849.html
   My bibliography  Save this article

Integrated Optimal Energy Management of Multi-Microgrid Network Considering Energy Performance Index: Global Chance-Constrained Programming Framework

Author

Listed:
  • Mohammad Hemmati

    (Center for Industrial Electronics, University of Southern Denmark, 6400 Sønderborg, Denmark)

  • Navid Bayati

    (Center for Industrial Electronics, University of Southern Denmark, 6400 Sønderborg, Denmark)

  • Thomas Ebel

    (Center for Industrial Electronics, University of Southern Denmark, 6400 Sønderborg, Denmark)

Abstract

Distributed generation (DG) sources play a special role in the operation of active energy networks. The microgrid (MG) is known as a suitable substrate for the development and installation of DGs. However, the future of energy distribution networks will consist of more interconnected and complex MGs, called multi-microgrid (MMG) networks. Therefore, energy management in such an energy system is a major challenge for distribution network operators. This paper presents a new energy management method for the MMG network in the presence of battery storage, renewable sources, and demand response (DR) programs. To show the performance of each connected MG’s inefficient utilization of its available generation capacity, an index called unused power capacity (UPC) is defined, which indicates the availability and individual performance of each MG. The uncertainties associated with load and the power output of wind and solar sources are handled by employing the chance-constrained programming (CCP) optimization framework in the MMG energy management model. The proposed CCP ensures the safe operation of the system at the desired confidence level by involving various uncertainties in the problem while optimizing operating costs under Mixed-Integer Linear Programming (MILP). The proposed energy management model is assessed on a sample network concerning DC power flow limitations. The procured power of each MG and power exchanges at the distribution network level are investigated and discussed.

Suggested Citation

  • Mohammad Hemmati & Navid Bayati & Thomas Ebel, 2024. "Integrated Optimal Energy Management of Multi-Microgrid Network Considering Energy Performance Index: Global Chance-Constrained Programming Framework," Energies, MDPI, vol. 17(17), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4367-:d:1468849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spyros Giannelos & Stefan Borozan & Marko Aunedi & Xi Zhang & Hossein Ameli & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2023. "Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids," Energies, MDPI, vol. 16(13), pages 1-15, June.
    2. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    3. Kavousi-Fard, Abdollah & Khodaei, Amin, 2016. "Efficient integration of plug-in electric vehicles via reconfigurable microgrids," Energy, Elsevier, vol. 111(C), pages 653-663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minghong Liu & Mengke Liao & Ruilong Zhang & Xin Yuan & Zhaoqun Zhu & Zhi Wu, 2025. "Quantum Computing as a Catalyst for Microgrid Management: Enhancing Decentralized Energy Systems Through Innovative Computational Techniques," Sustainability, MDPI, vol. 17(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    2. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    3. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    4. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
    5. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    6. Dini, Anoosh & Hassankashi, Alireza & Pirouzi, Sasan & Lehtonen, Matti & Arandian, Behdad & Baziar, Ali Asghar, 2022. "A flexible-reliable operation optimization model of the networked energy hubs with distributed generations, energy storage systems and demand response," Energy, Elsevier, vol. 239(PA).
    7. Ali Reza Kheirkhah & Carlos Frederico Meschini Almeida & Nelson Kagan & Jonatas Boas Leite, 2023. "Optimal Probabilistic Allocation of Photovoltaic Distributed Generation: Proposing a Scenario-Based Stochastic Programming Model," Energies, MDPI, vol. 16(21), pages 1-18, October.
    8. Valencia-Díaz, Alejandro & Toro, Eliana M. & Hincapié, Ricardo A., 2025. "Optimal planning and management of the energy–water–carbon nexus in hybrid AC/DC microgrids for sustainable development of remote communities," Applied Energy, Elsevier, vol. 377(PB).
    9. Lin Wang & Yugang He & Renhong Wu, 2024. "Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability," Energies, MDPI, vol. 17(4), pages 1-25, February.
    10. Azad, AmirHossein & Shateri, Hossein, 2023. "Design and optimization of an entirely hybrid renewable energy system (WT/PV/BW/HS/TES/EVPL) to supply electrical and thermal loads with considering uncertainties in generation and consumption," Applied Energy, Elsevier, vol. 336(C).
    11. Faa-Jeng Lin & Su-Ying Lu & Ming-Che Hu & Yen-Haw Chen, 2024. "Stochastic Optimal Strategies and Management of Electric Vehicles and Microgrids," Energies, MDPI, vol. 17(15), pages 1-19, July.
    12. Zafarani, Hamidreza & Taher, Seyed Abbas & Shahidehpour, Mohammad, 2020. "Robust operation of a multicarrier energy system considering EVs and CHP units," Energy, Elsevier, vol. 192(C).
    13. Ramos Muñoz, Edgar & Razeghi, Ghazal & Zhang, Li & Jabbari, Faryar, 2016. "Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels," Energy, Elsevier, vol. 113(C), pages 930-942.
    14. Lang Zhao & Zhidong Wang & Hao Sheng & Yizheng Li & Xueying Wang & Yao Wang & Haifeng Yu, 2024. "Optimal Configuration Model for Large Capacity Synchronous Condenser Considering Transient Voltage Stability in Multiple UHV DC Receiving End Grids," Energies, MDPI, vol. 17(21), pages 1-21, October.
    15. Masoumeh Sharifpour & Mohammad Taghi Ameli & Hossein Ameli & Goran Strbac, 2023. "A Resilience-Oriented Approach for Microgrid Energy Management with Hydrogen Integration during Extreme Events," Energies, MDPI, vol. 16(24), pages 1-18, December.
    16. Quddus, Md Abdul & Kabli, Mohannad & Marufuzzaman, Mohammad, 2019. "Modeling electric vehicle charging station expansion with an integration of renewable energy and Vehicle-to-Grid sources," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 251-279.
    17. Lin, Haiyang & Fu, Kun & Wang, Yu & Sun, Qie & Li, Hailong & Hu, Yukun & Sun, Bo & Wennersten, Ronald, 2019. "Characteristics of electric vehicle charging demand at multiple types of location - Application of an agent-based trip chain model," Energy, Elsevier, vol. 188(C).
    18. Kheradmand-Khanekehdani, Habiballah & Gitizadeh, Mohsen, 2018. "Well-being analysis of distribution network in the presence of electric vehicles," Energy, Elsevier, vol. 155(C), pages 610-619.
    19. Spyros Giannelos & Tai Zhang & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2024. "Investments in Electricity Distribution Grids: Strategic versus Incremental Planning," Energies, MDPI, vol. 17(11), pages 1-13, June.
    20. Norouzi, Mohammadali & Aghaei, Jamshid & Pirouzi, Sasan & Niknam, Taher & Fotuhi-Firuzabad, Mahmud, 2022. "Flexibility pricing of integrated unit of electric spring and EVs parking in microgrids," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4367-:d:1468849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.