IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3165-d1423662.html
   My bibliography  Save this article

The Development of a Green Hydrogen Economy: Review

Author

Listed:
  • Eugeniusz Mokrzycki

    (Mineral and Energy Economy Research Institute of the Polish Academy of Science, 31-261 Krakow, Poland)

  • Lidia Gawlik

    (Mineral and Energy Economy Research Institute of the Polish Academy of Science, 31-261 Krakow, Poland)

Abstract

Building a hydrogen economy is perceived as a way to achieve the decarbonization goals set out in the Paris Agreement to limit global warming, as well as to meet the goals resulting from the European Green Deal for the decarbonization of Europe. This article presents a literature review of various aspects of this economy. The full added value chain of hydrogen was analyzed, from its production through to storage, transport, distribution and use in various economic sectors. The current state of knowledge about hydrogen is presented, with particular emphasis on its features that may determine the positives and negatives of its development. It was noted that although hydrogen has been known for many years, its production methods are mainly related to fossil fuels, which result in greenhouse gas emissions. The area of interest of modern science is limited to green hydrogen, produced as a result of electrolysis from electricity produced from renewable energy sources. The development of a clean hydrogen economy is limited by many factors, the most important of which are the excessive costs of producing clean hydrogen. Research and development on all elements of the hydrogen production and use chain is necessary to contribute to increasing the scale of production and use of this raw material and thus reducing costs as a result of the efficiencies of scale and experience gained. The development of the hydrogen economy will be related to the development of the hydrogen trade, and the centers of this trade will differ significantly from the current centers of energy carrier trade.

Suggested Citation

  • Eugeniusz Mokrzycki & Lidia Gawlik, 2024. "The Development of a Green Hydrogen Economy: Review," Energies, MDPI, vol. 17(13), pages 1-29, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3165-:d:1423662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyewon Yang & Young Jae Han & Jiwon Yu & Sumi Kim & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Exploring Future Promising Technologies in Hydrogen Fuel Cell Transportation," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    2. Squadrito, Gaetano & Maggio, Gaetano & Nicita, Agatino, 2023. "The green hydrogen revolution," Renewable Energy, Elsevier, vol. 216(C).
    3. Carlson, Ewa Lazarczyk & Pickford, Kit & Nyga-Łukaszewska, Honorata, 2023. "Green hydrogen and an evolving concept of energy security: Challenges and comparisons," Renewable Energy, Elsevier, vol. 219(P1).
    4. Farah Mneimneh & Hasan Ghazzawi & Mohammad Abu Hejjeh & Matteo Manganelli & Seeram Ramakrishna, 2023. "Roadmap to Achieving Sustainable Development via Green Hydrogen," Energies, MDPI, vol. 16(3), pages 1-25, January.
    5. Abdoulaye Ballo & Koffi Kouakou Valentin & Bruno Korgo & Kehinde Olufunso Ogunjobi & Solomon Nwabueze Agbo & Daouda Kone & Moumini Savadogo, 2022. "Law and Policy Review on Green Hydrogen Potential in ECOWAS Countries," Energies, MDPI, vol. 15(7), pages 1-14, March.
    6. David Franzmann & Heidi Heinrichs & Felix Lippkau & Thushara Addanki & Christoph Winkler & Patrick Buchenberg & Thomas Hamacher & Markus Blesl & Jochen Lin{ss}en & Detlef Stolten, 2023. "Green Hydrogen Cost-Potentials for Global Trade," Papers 2303.00314, arXiv.org, revised May 2023.
    7. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Begoña Vivanco-Martín & Alfredo Iranzo, 2023. "Analysis of the European Strategy for Hydrogen: A Comprehensive Review," Energies, MDPI, vol. 16(9), pages 1-36, May.
    9. Friedrich Plank & Johannes Muntschick & Arne Niemann & Michèle Knodt, 2023. "External Hydrogen Relations of the European Union: Framing Processes in the Public Discourse Towards and within Partner Countries," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    10. Bhandari, Ramchandra, 2022. "Green hydrogen production potential in West Africa – Case of Niger," Renewable Energy, Elsevier, vol. 196(C), pages 800-811.
    11. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    12. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. André Wolf & Nils Zander, 2021. "Green Hydrogen in Europe: Do Strategies Meet Expectations?," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 56(6), pages 316-323, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenggang Wang & Tiansen Liu & Danli Du & Yue Zhu & Zuolong Zheng & Hanchen Li, 2024. "Impact of the Digital Economy on the Green Economy: Evidence from China," Sustainability, MDPI, vol. 16(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uchendu Eugene Chigbu & Chigozie Nweke-Eze, 2023. "Green Hydrogen Production and Its Land Tenure Consequences in Africa: An Interpretive Review," Land, MDPI, vol. 12(9), pages 1-20, September.
    2. Sun, Chongzheng & Liu, Yuxiang & Yang, Xin & Li, Yuxing & Geng, Xiaoyi & Han, Hui & Lu, Xiao, 2024. "Experimental and numerical study on the offshore adaptability of new FLH2 floating hydrogen liquefaction production storage and offloading unit," Renewable Energy, Elsevier, vol. 224(C).
    3. C. Winkler & H. Heinrichs & S. Ishmam & B. Bayat & A. Lahnaoui & S. Agbo & E. U. Pe~na Sanchez & D. Franzmann & N. Oijeabou & C. Koerner & Y. Michael & B. Oloruntoba & C. Montzka & H. Vereecken & H. H, 2024. "Participatory Mapping of Local Green Hydrogen Cost-Potentials in Sub-Saharan Africa," Papers 2408.10184, arXiv.org.
    4. Pierre-Antoine Muselli & Jean-Nicolas Antoniotti & Marc Muselli, 2022. "Climate Change Impacts on Gaseous Hydrogen (H 2 ) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe," Energies, MDPI, vol. 16(1), pages 1-21, December.
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Ju-Yeol Ryu & Sungho Park & Changhyeong Lee & Seonghyeon Hwang & Jongwoong Lim, 2023. "Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)," Energies, MDPI, vol. 16(19), pages 1-19, September.
    7. Lucey, Brian & Yahya, Muhammad & Khoja, Layla & Uddin, Gazi Salah & Ahmed, Ali, 2024. "Interconnectedness and risk profile of hydrogen against major asset classes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Stamatios K. Chrysikopoulos & Panos T. Chountalas & Dimitrios A. Georgakellos & Athanasios G. Lagodimos, 2024. "Decarbonization in the Oil and Gas Sector: The Role of Power Purchase Agreements and Renewable Energy Certificates," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
    9. Karmegam Dhanabalan & Muthukumar Perumalsamy & Ganesan Sriram & Nagaraj Murugan & Shalu & Thangarasu Sadhasivam & Tae Hwan Oh, 2023. "Metal–Organic Framework (MOF)-Derived Catalyst for Oxygen Reduction Reaction (ORR) Applications in Fuel Cell Systems: A Review of Current Advancements and Perspectives," Energies, MDPI, vol. 16(13), pages 1-19, June.
    10. Yong-Jae Lee & Young Jae Han & Sang-Soo Kim & Chulung Lee, 2022. "Patent Data Analytics for Technology Forecasting of the Railway Main Transformer," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    11. xu, Guiying & Qian, Haifeng & Zhang, Qi & R Alsenani, Theyab & Bouzgarrou, Souhail & Alturise, Fahad, 2024. "Integration of biomass gasification and O2/H2 separation membranes for H2 production/separation with inherent CO2 capture: Techno-economic evaluation and artificial neural network based multi-objectiv," Renewable Energy, Elsevier, vol. 224(C).
    12. Cardinale, Roberto, 2023. "From natural gas to green hydrogen: Developing and repurposing transnational energy infrastructure connecting North Africa to Europe," Energy Policy, Elsevier, vol. 181(C).
    13. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    14. Dong, Weiwei & Niu, XiaoQin & Nassani, Abdelmohsen A. & Naseem, Imran & Zaman, Khalid, 2024. "E-commerce mineral resource footprints: Investigating drivers for sustainable mining development," Resources Policy, Elsevier, vol. 89(C).
    15. Marcelo Azevedo Benetti & Florin Iov, 2023. "A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen," Energies, MDPI, vol. 16(7), pages 1-20, March.
    16. Arkadiusz Małek & Agnieszka Dudziak & Jacek Caban & Monika Stoma, 2024. "Strategic Model for Yellow Hydrogen Production Using the Metalog Family of Probability Distributions," Energies, MDPI, vol. 17(10), pages 1-24, May.
    17. Egerer, Jonas & Farhang-Damghani, Nima & Grimm, Veronika & Runge, Philipp, 2024. "The industry transformation from fossil fuels to hydrogen will reorganize value chains: Big picture and case studies for Germany," Applied Energy, Elsevier, vol. 358(C).
    18. Ewelina Kochanek, 2022. "The Role of Hydrogen in the Visegrad Group Approach to Energy Transition," Energies, MDPI, vol. 15(19), pages 1-18, October.
    19. Katharina Löhr & Custódio Efraim Matavel & Sophia Tadesse & Masoud Yazdanpanah & Stefan Sieber & Nadejda Komendantova, 2022. "Just Energy Transition: Learning from the Past for a More Just and Sustainable Hydrogen Transition in West Africa," Land, MDPI, vol. 11(12), pages 1-23, December.
    20. Svetlana Revinova & Inna Lazanyuk & Svetlana Ratner & Konstantin Gomonov, 2023. "Forecasting Development of Green Hydrogen Production Technologies Using Component-Based Learning Curves," Energies, MDPI, vol. 16(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3165-:d:1423662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.