IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p178-d1309372.html
   My bibliography  Save this article

Numerical Study on Heat Generation Characteristics of Charge and Discharge Cycle of the Lithium-Ion Battery

Author

Listed:
  • Yuxuan Tan

    (School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Yue Li

    (School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Yueqing Gu

    (School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Wenjie Liu

    (School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Juan Fang

    (School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Chongchao Pan

    (School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
    School of Energy and Environment, City University of Hongkong, Hongkong 999077, China)

Abstract

Lithium-ion batteries are the backbone of novel energy vehicles and ultimately contribute to a more sustainable and environmentally friendly transportation system. Taking a 5 Ah ternary lithium-ion battery as an example, a two-dimensional axisymmetric electrochemical–thermal coupling model is developed via COMSOL Multiphysics 6.0 in this study and then is validated with the experimental data. The proportion of different types of heat generation in a 26,650 ternary lithium-ion battery during the charge/discharge cycle is investigated numerically. Moreover, the impact of essential factors such as charge/discharge multiplier and ambient temperature on the reaction heat, ohmic heat, and polarization heat are analyzed separately. The numerical results indicate that the total heat generated by the constant discharge process is the highest in the charging and discharging cycle of a single battery. The maximum heat production per unit volume is 67,446.99 W/m 3 at 2 C multiplier discharge. Furthermore, the polarization heat presents the highest percentage in the charge/discharge cycle, reaching up to 58.18% at 0 C and 1 C multiplier discharge. In a high-rate discharge, the proportion of the reaction heat decreases from 34.31% to 12.39% as the discharge rate increases from 0.5 C to 2 C. As the discharge rate rises and the ambient temperature falls, the maximum temperature increase of the single-cell battery also rises, with a more pronounced impact compared to increasing the discharge rate.

Suggested Citation

  • Yuxuan Tan & Yue Li & Yueqing Gu & Wenjie Liu & Juan Fang & Chongchao Pan, 2023. "Numerical Study on Heat Generation Characteristics of Charge and Discharge Cycle of the Lithium-Ion Battery," Energies, MDPI, vol. 17(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:178-:d:1309372
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lipeng Xu & Chongwang Tian & Chunjiang Bao & Jinsheng Zhao & Xuning Leng, 2023. "Improving the Electrochemical Performance of Core–Shell LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Materials Using Environmentally Friendly Phase Structure Control Process," Energies, MDPI, vol. 16(10), pages 1-17, May.
    2. Anne Christine Lusk & Xin Li & Qiming Liu, 2023. "If the Government Pays for Full Home-Charger Installation, Would Affordable-Housing and Middle-Income Residents Buy Electric Vehicles?," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    3. Lei, Deyong & Wang, Yun & Fu, Jingfei & Zhu, Xiaobao & Shi, Jing & Wang, Yachao, 2024. "Electrochemical-thermal analysis of large-sized lithium-ion batteries: Influence of cell thickness and cooling strategy in charging," Energy, Elsevier, vol. 307(C).
    4. Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).
    5. Maryam Ghalkhani & Saeid Habibi, 2022. "Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application," Energies, MDPI, vol. 16(1), pages 1-16, December.
    6. Wu, Jiafeng & Li, Lin & Yin, Zichao & Li, Zhe & Wang, Tong & Tan, Yunfeng & Tan, Dapeng, 2024. "Mass transfer mechanism of multiphase shear flows and interphase optimization solving method," Energy, Elsevier, vol. 292(C).
    7. Huang, Jianbai & Dong, Xuesong & Chen, Jinyu & Zeng, Anqi, 2023. "The slow-release effect of recycling on rapid demand growth of critical metals from EV batteries up to 2050: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    8. Li, Li & Ling, Lei & Xie, Yajun & Zhou, Wencai & Wang, Tianbo & Zhang, Lanchun & Bei, Shaoyi & Zheng, Keqing & Xu, Qiang, 2023. "Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling," Energy, Elsevier, vol. 274(C).
    9. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    10. Wang, Anci & Yin, Xiang & Xin, Zhicheng & Cao, Feng & Wu, Zan & Sundén, Bengt & Xiao, Di, 2023. "Performance optimization of electric vehicle battery thermal management based on the transcritical CO2 system," Energy, Elsevier, vol. 266(C).
    11. Zhang, Furen & Lu, Fu & Liang, Beibei & Zhu, Yilin & Gou, Huan & Xiao, Kang & He, Yanxiao, 2023. "Thermal performance analysis of a new type of branch-fin enhanced battery thermal management PCM module," Renewable Energy, Elsevier, vol. 206(C), pages 1049-1063.
    12. Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
    13. Li, Yichao & Ma, Chen & Liu, Kailong & Chang, Long & Zhang, Chenghui & Duan, Bin, 2024. "A novel joint estimation for core temperature and state of charge of lithium-ion battery based on classification approach and convolutional neural network," Energy, Elsevier, vol. 308(C).
    14. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    15. Caulfield, Brian & Furszyfer, Dylan & Stefaniec, Agnieszka & Foley, Aoife, 2022. "Measuring the equity impacts of government subsidies for electric vehicles," Energy, Elsevier, vol. 248(C).
    16. Liang Xu & Hongwei Lin & Naiyuan Hu & Lei Xi & Yunlong Li & Jianmin Gao, 2024. "Multi-Objective Optimization towards Heat Dissipation Performance of the New Tesla Valve Channels with Partitions in a Liquid-Cooled Plate," Energies, MDPI, vol. 17(13), pages 1-21, June.
    17. Rajeshkumar Ramraj & Ehsan Pashajavid & Sanath Alahakoon & Shantha Jayasinghe, 2023. "Quality of Service and Associated Communication Infrastructure for Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-28, October.
    18. Li, Yang & Wang, Shunli & Chen, Lei & Qi, Chuangshi & Fernandez, Carlos, 2023. "Multiple layer kernel extreme learning machine modeling and eugenics genetic sparrow search algorithm for the state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 282(C).
    19. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Zhu, Tingting & Li, Yan, 2023. "Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array," Applied Energy, Elsevier, vol. 337(C).
    20. Wenzhe Li & Youhang Zhou & Haonan Zhang & Xuan Tang, 2023. "A Review on Battery Thermal Management for New Energy Vehicles," Energies, MDPI, vol. 16(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:178-:d:1309372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.