IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p174-d1309380.html
   My bibliography  Save this article

The Methods of Assessing the Efficiency of a Virtual Power Plant—Case Study

Author

Listed:
  • Edyta Ropuszyńska-Surma

    (Faculty of Management, Wrocław University of Science and Technology, 50-370 Wrocław, Poland)

  • Magdalena Węglarz

    (Faculty of Management, Wrocław University of Science and Technology, 50-370 Wrocław, Poland)

Abstract

In the case of new investment in RES technology, there are two issues related to efficiency assessment. The first one is how to join technical, financial and economic efficiency assessments in one. An investment feasibility study is usually conducted through a financial analysis to obtain the internal rate of return and the net present value. However, a new RES investment is typically financially unprofitable unless the environmental and social aspects are included. The second one is a lack of required financial data. The new RES investment is often innovative and neither the owner nor other entities have financial data on the operating costs and expenditure for the last periods. Therefore, in this paper, we proposed two methods of efficiency assessment. The first one is based on the avoided costs theory. Furthermore, the second one belongs to heuristic methods and is based on the experts’ assessment of different kinds of parameters. The purpose of this study is to assess the efficiency of the pilot project of VPPs using two recommended methods. This paper emphasizes the advantages and disadvantages of each method. The actual technical and financial data for the period of six months from the pilot study were calculated.

Suggested Citation

  • Edyta Ropuszyńska-Surma & Magdalena Węglarz, 2023. "The Methods of Assessing the Efficiency of a Virtual Power Plant—Case Study," Energies, MDPI, vol. 17(1), pages 1-28, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:174-:d:1309380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Renar, Jože & Tomšič, Miha, 1992. "Optimal electric power conservation investments using utility avoided-costs," Energy, Elsevier, vol. 17(5), pages 499-508.
    2. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    3. Danielsen, Albert L. & Gupta, Nainish K. & Klein, Peter G., 1999. "Contracts and the Institutional Environment for Electricity Reform," The Electricity Journal, Elsevier, vol. 12(10), pages 51-60, December.
    4. Zhu, Xingyi & Zhan, Xiangyan & Liang, Hao & Zheng, Xuyue & Qiu, Yuwei & Lin, Jian & Chen, Jincan & Meng, Chao & Zhao, Yingru, 2020. "The optimal design and operation strategy of renewable energy-CCHP coupled system applied in five building objects," Renewable Energy, Elsevier, vol. 146(C), pages 2700-2715.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    2. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    3. Zoran Gligorić & Svetlana Štrbac Savić & Aleksandra Grujić & Milanka Negovanović & Omer Musić, 2018. "Short-Term Electricity Price Forecasting Model Using Interval-Valued Autoregressive Process," Energies, MDPI, vol. 11(7), pages 1-17, July.
    4. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    5. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    6. Gerardo J. Osório & Mohamed Lotfi & Miadreza Shafie-khah & Vasco M. A. Campos & João P. S. Catalão, 2018. "Hybrid Forecasting Model for Short-Term Electricity Market Prices with Renewable Integration," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    7. Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    8. Lucía Inglada-Pérez & Sandra González y Gil, 2024. "A Study on the Nature of Complexity in the Spanish Electricity Market Using a Comprehensive Methodological Framework," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    9. Jiang, Jianhua & Zhou, Renjie & Xu, Hao & Wang, Hao & Wu, Ping & Wang, Zhuo & Li, Jian, 2022. "Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid," Applied Energy, Elsevier, vol. 307(C).
    10. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    11. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    12. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    13. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    14. Joanna Janczura & Aleksandra Michalak, 2020. "Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts," Energies, MDPI, vol. 13(5), pages 1-16, February.
    15. Luis M. López-Manrique & E. V. Macias-Melo & O. May Tzuc & A. Bassam & K. M. Aguilar-Castro & I. Hernández-Pérez, 2018. "Assessment of Resource and Forecast Modeling of Wind Speed through An Evolutionary Programming Approach for the North of Tehuantepec Isthmus (Cuauhtemotzin, Mexico)," Energies, MDPI, vol. 11(11), pages 1-22, November.
    16. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
    17. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
    18. Raimund M. Kovacevic, 2019. "Arbitrage conditions for electricity markets with production and storage," Computational Management Science, Springer, vol. 16(4), pages 671-696, October.
    19. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
    20. Grothe, Oliver & Kächele, Fabian & Krüger, Fabian, 2023. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:174-:d:1309380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.