IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2018i1p57-d192550.html
   My bibliography  Save this article

Hybrid Forecasting Model for Short-Term Electricity Market Prices with Renewable Integration

Author

Listed:
  • Gerardo J. Osório

    (Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • Mohamed Lotfi

    (INESC TEC, 4200-465 Porto, Portugal
    Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Miadreza Shafie-khah

    (INESC TEC, 4200-465 Porto, Portugal)

  • Vasco M. A. Campos

    (Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • João P. S. Catalão

    (INESC TEC, 4200-465 Porto, Portugal
    Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

Abstract

In recent years, there have been notable commitments and obligations by the electricity sector for more sustainable generation and delivery processes to reduce the environmental footprint. However, there is still a long way to go to achieve necessary sustainability goals while ensuring standards of robustness and the quality of power grids. One of the main challenges hindering this progress are uncertainties and stochasticity associated with the electricity sector and especially renewable generation. In this paradigm shift, forecasting tools are indispensable, and their utilization can significantly improve system operation and minimize costs associated with all related activities. Thus, forecasting tools have an essential key role in all decision-making stages. In this work, a hybrid probabilistic forecasting model (HPFM) was developed for short-term electricity market prices (EMP) combining wavelet transforms (WT), hybrid particle swarm optimization (DEEPSO), adaptive neuro-fuzzy inference system (ANFIS), and Monte Carlo simulation (MCS). The proposed hybrid probabilistic forecasting model (HPFM) was tested and validated with real data from the Spanish and Pennsylvania-New Jersey-Maryland (PJM) markets. The proposed model exhibited favorable results and performance in comparison with previously published work considering electricity market prices (EMP) data, which is notable.

Suggested Citation

  • Gerardo J. Osório & Mohamed Lotfi & Miadreza Shafie-khah & Vasco M. A. Campos & João P. S. Catalão, 2018. "Hybrid Forecasting Model for Short-Term Electricity Market Prices with Renewable Integration," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:57-:d:192550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/57/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/57/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Lotfi & Mohammad Javadi & Gerardo J. Osório & Cláudio Monteiro & João P. S. Catalão, 2020. "A Novel Ensemble Algorithm for Solar Power Forecasting Based on Kernel Density Estimation," Energies, MDPI, vol. 13(1), pages 1-19, January.
    2. Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
    3. Chao-Rong Chen & Faouzi Brice Ouedraogo & Yu-Ming Chang & Devita Ayu Larasati & Shih-Wei Tan, 2021. "Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS," Mathematics, MDPI, vol. 9(19), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    2. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    3. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    4. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    5. Tomasz Serafin & Bartosz Uniejewski & Rafał Weron, 2019. "Averaging Predictive Distributions Across Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 12(13), pages 1-12, July.
    6. Zoran Gligorić & Svetlana Štrbac Savić & Aleksandra Grujić & Milanka Negovanović & Omer Musić, 2018. "Short-Term Electricity Price Forecasting Model Using Interval-Valued Autoregressive Process," Energies, MDPI, vol. 11(7), pages 1-17, July.
    7. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    8. Kath, Christopher & Ziel, Florian, 2021. "Conformal prediction interval estimation and applications to day-ahead and intraday power markets," International Journal of Forecasting, Elsevier, vol. 37(2), pages 777-799.
    9. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    10. Weronika Nitka & Rafał Weron, 2023. "Combining predictive distributions of electricity prices. Does minimizing the CRPS lead to optimal decisions in day-ahead bidding?," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 105-118.
    11. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    12. Micha{l} Narajewski & Florian Ziel, 2021. "Optimal bidding in hourly and quarter-hourly electricity price auctions: trading large volumes of power with market impact and transaction costs," Papers 2104.14204, arXiv.org, revised Feb 2022.
    13. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    14. Ismael Ahrazem Dfuf & José Manuel Mira McWilliams & María Camino González Fernández, 2019. "Multi-Output Conditional Inference Trees Applied to the Electricity Market: Variable Importance Analysis," Energies, MDPI, vol. 12(6), pages 1-24, March.
    15. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    16. Li, Wei & Paraschiv, Florentina, 2022. "Modelling the evolution of wind and solar power infeed forecasts," Journal of Commodity Markets, Elsevier, vol. 25(C).
    17. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    18. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    19. Joanna Janczura & Aleksandra Michalak, 2020. "Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts," Energies, MDPI, vol. 13(5), pages 1-16, February.
    20. Grzegorz Marcjasz & Bartosz Uniejewski & Rafał Weron, 2020. "Beating the Naïve—Combining LASSO with Naïve Intraday Electricity Price Forecasts," Energies, MDPI, vol. 13(7), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:57-:d:192550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.