Two- and Three-Stage Natural Gas Combustion System—Experimental Comparative Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Divekar, Prasad & Han, Xiaoye & Zhang, Xiaoxi & Zheng, Ming & Tjong, Jimi, 2023. "Energy efficiency improvements and CO2 emission reduction by CNG use in medium- and heavy-duty spark-ignition engines," Energy, Elsevier, vol. 263(PB).
- Viktor Dilber & Momir Sjerić & Rudolf Tomić & Josip Krajnović & Sara Ugrinić & Darko Kozarac, 2022. "Optimization of Pre-Chamber Geometry and Operating Parameters in a Turbulent Jet Ignition Engine," Energies, MDPI, vol. 15(13), pages 1-21, June.
- Maxime Jean & Pascal Granier & Thomas Leroy, 2022. "Combustion Stability Control Based on Cylinder Pressure for High Efficiency Gasoline Engines," Energies, MDPI, vol. 15(7), pages 1-10, March.
- Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
- Sahoo, Sridhar & Srivastava, Dhananjay Kumar, 2021. "Effect of compression ratio on engine knock, performance, combustion and emission characteristics of a bi-fuel CNG engine," Energy, Elsevier, vol. 233(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hammam Aljabri & Mickael Silva & Moez Ben Houidi & Xinlei Liu & Moaz Allehaibi & Fahad Almatrafi & Abdullah S. AlRamadan & Balaji Mohan & Emre Cenker & Hong G. Im, 2022. "Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach," Energies, MDPI, vol. 15(23), pages 1-21, November.
- Novella, R. & Gomez-Soriano, J. & Barbery, I. & Martinez-Hernandiz, P.J., 2024. "Exploring the passive the pre-chamber ignition concept for spark-ignition engines fueled with natural gas under EGR-diluted conditions," Energy, Elsevier, vol. 294(C).
- Hosseini, M. & Chitsaz, I., 2023. "Knock probability determination employing convolutional neural network and IGTD algorithm," Energy, Elsevier, vol. 284(C).
- García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
- Zareei, Javad & Ghadamkheir, Kourosh & Farkhondeh, Seyed Alireza & Abed, Azher M. & Catalan Opulencia, Maria Jade & Nuñez Alvarez, José Ricardo, 2022. "Numerical investigation of hydrogen enriched natural gas effects on different characteristics of a SI engine with modified injection mechanism from port to direct injection," Energy, Elsevier, vol. 255(C).
- Jaller, Miguel PhD & Xiao, Runhua Ivan, 2023. "The Effects of Truck Idling and Searching for Parking on Disadvantaged Communities," Institute of Transportation Studies, Working Paper Series qt9w28d01h, Institute of Transportation Studies, UC Davis.
- Santiago Molina & Ricardo Novella & Josep Gomez-Soriano & Miguel Olcina-Girona, 2021. "New Combustion Modelling Approach for Methane-Hydrogen Fueled Engines Using Machine Learning and Engine Virtualization," Energies, MDPI, vol. 14(20), pages 1-21, October.
- Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing," Energy, Elsevier, vol. 246(C).
- Xi, Haoran & Fu, Jianqin & Zhou, Feng & Yu, Juan & Liu, Jingping & Meng, Zhongwei, 2023. "Experimental and numerical studies of thermal power conversion and energy flow under high-compression ratios of a liquid methane engine (LME)," Energy, Elsevier, vol. 284(C).
- Zhu, Sipeng & Akehurst, Sam & Lewis, Andrew & Yuan, Hao, 2022. "A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- He, Bang-Quan & Xu, Si-Peng & Fu, Xue-Qing & Zhao, Hua, 2020. "Combustion and emission characteristics of an ultra-lean burn gasoline engine with dimethyl ether auto-ignition," Energy, Elsevier, vol. 209(C).
- Yontar, Ahmet Alper, 2020. "A comparative study to evaluate the effects of pre-chamber jet ignition for engine characteristics and emission formations at high speed," Energy, Elsevier, vol. 210(C).
- Ju, Dehao & Huang, Zhong & Li, Xiang & Zhang, Tingting & Cai, Weiwei, 2020. "Comparison of open chamber and pre-chamber ignition of methane/air mixtures in a large bore constant volume chamber: Effect of excess air ratio and pre-mixed pressure," Applied Energy, Elsevier, vol. 260(C).
- Rudolf Tomić & Momir Sjerić & Josip Krajnović & Sara Ugrinić, 2023. "Influence of Pre-Chamber Volume, Orifice Diameter and Orifice Number on Performance of Pre-Chamber SI Engine—An Experimental and Numerical Study," Energies, MDPI, vol. 16(6), pages 1-19, March.
- Nyamsuren Gombosuren & Ogami Yoshifumi & Asada Hiroyuki, 2020. "A Charge Possibility of an Unfueled Prechamber and Its Fluctuating Phenomenon for the Spark Ignited Engine," Energies, MDPI, vol. 13(2), pages 1-17, January.
- López, J.J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Rampanarivo, F. & Libert, C. & Dabiri, M., 2021. "Advantages of the unscavenged pre-chamber ignition system in turbocharged natural gas engines for automotive applications," Energy, Elsevier, vol. 218(C).
- Monica Costea & Michel Feidt, 2022. "A Review Regarding Combined Heat and Power Production and Extensions: Thermodynamic Modelling and Environmental Impact," Energies, MDPI, vol. 15(23), pages 1-25, November.
- Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).
- Lina Xu & Gang Li & Mingfa Yao & Zunqing Zheng & Hu Wang, 2022. "Numerical Investigation on the Jet Characteristics and Combustion Process of an Active Prechamber Combustion System Fueled with Natural Gas," Energies, MDPI, vol. 15(15), pages 1-16, July.
- da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
More about this item
Keywords
combustion system; TJI system; prechamber; combustion process repeatability; combustion efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3837-:d:1136662. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.