IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2530-d783141.html
   My bibliography  Save this article

Combustion Stability Control Based on Cylinder Pressure for High Efficiency Gasoline Engines

Author

Listed:
  • Maxime Jean

    (IFP Energies Nouvelles, 1-4 Av. du Bois Préau, 92852 Rueil-Malmaison, France)

  • Pascal Granier

    (IFP Energies Nouvelles, 1-4 Av. du Bois Préau, 92852 Rueil-Malmaison, France)

  • Thomas Leroy

    (IFP Energies Nouvelles, 1-4 Av. du Bois Préau, 92852 Rueil-Malmaison, France)

Abstract

Minimizing fuel consumption of passenger car vehicles can be achieved thanks to hybridization of the powertrain associated with innovative engine technologies. To feed the new high compression ratio combustion systems, air system cutting-edge technologies are used to manage air and EGR (Exhaust Gas Recirculation) quantities. Increasing EGR allows us to improve engine consumption in the high efficiency area, but it comes at the cost of a loss of stability. It is then of primary importance to be able to manage the engine near the stability limit to minimize fuel consumption. So far, the stability limit is managed in open-loop thanks to conservative calibration of the EGR quantity, implying efficiency losses. This paper addresses the combustion stability feedback control using in-cylinder pressure sensors. From this information, an indicator of stability is proposed, offering a more robust behavior in transient situations than state-of-the-art indicators. This indicator is then used to feed a controller that adapts the open-loop EGR target to go towards the stability limit. Experimental results obtained on a high efficiency gasoline engine stress the relevance of the approach in minimizing fuel consumption under real driving conditions.

Suggested Citation

  • Maxime Jean & Pascal Granier & Thomas Leroy, 2022. "Combustion Stability Control Based on Cylinder Pressure for High Efficiency Gasoline Engines," Energies, MDPI, vol. 15(7), pages 1-10, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2530-:d:783141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Haiqiao & Zhu, Tianyu & Shu, Gequn & Tan, Linlin & Wang, Yuesen, 2012. "Gasoline engine exhaust gas recirculation – A review," Applied Energy, Elsevier, vol. 99(C), pages 534-544.
    2. Armin Norouzi & Hamed Heidarifar & Mahdi Shahbakhti & Charles Robert Koch & Hoseinali Borhan, 2021. "Model Predictive Control of Internal Combustion Engines: A Review and Future Directions," Energies, MDPI, vol. 14(19), pages 1-40, October.
    3. Tornatore, Cinzia & Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi & Valentino, Gerardo & Marchitto, Luca, 2019. "Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine," Energy, Elsevier, vol. 172(C), pages 968-976.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ireneusz Pielecha & Filip Szwajca, 2023. "Combustion of Lean Methane/Propane Mixtures with an Active Prechamber Engine in Terms of Various Fuel Distribution," Energies, MDPI, vol. 16(8), pages 1-18, April.
    2. Ireneusz Pielecha & Filip Szwajca, 2023. "Two- and Three-Stage Natural Gas Combustion System—Experimental Comparative Analysis," Energies, MDPI, vol. 16(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soo-Jin Jeong, 2024. "CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review," Energies, MDPI, vol. 17(18), pages 1-39, September.
    2. Nhlanhla Khanyi & Freddie Liswaniso Inambao & Riaan Stopforth, 2025. "A Comprehensive Review of the GT-POWER for Modelling Diesel Engines," Energies, MDPI, vol. 18(8), pages 1-27, April.
    3. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    4. Naderi, Alireza & Qasemian, Ali & Shojaeefard, Mohammad Hasan & Samiezadeh, Saman & Younesi, Mostafa & Sohani, Ali & Hoseinzadeh, Siamak, 2021. "A smart load-speed sensitive cooling map to have a high- performance thermal management system in an internal combustion engine," Energy, Elsevier, vol. 229(C).
    5. Roberto Finesso & Omar Marello, 2022. "Calculation of Intake Oxygen Concentration through Intake CO 2 Measurement and Evaluation of Its Effect on Nitrogen Oxide Prediction Accuracy in a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 15(1), pages 1-26, January.
    6. Jia, Dongdong & Qiao, Junhao & Wang, Shuqian & Guan, Jinhuan & Liu, Jingping & Fu, Jianqin & Li, Yangyang & Wang, Rumin, 2024. "Influence of variable enhanced LIVC miller cycle coupled with high compression ratio on the performance and combustion of a supercharged spark ignition engine," Energy, Elsevier, vol. 309(C).
    7. Loris Ventura & Roberto Finesso & Stefano A. Malan, 2023. "Development of a Model-Based Coordinated Air-Fuel Controller for a 3.0 dm 3 Diesel Engine and Its Assessment through Model-in-the-Loop," Energies, MDPI, vol. 16(2), pages 1-23, January.
    8. Han, Zhiqiang & Deng, Buwei & Wu, Xueshun & Tian, Wei & Fang, Jia & Wu, Yi & Yan, Yan & Zuo, Zinong, 2025. "Analysis of energy utilization and thermal efficiency in diesel engines under varying EGR rates," Energy, Elsevier, vol. 319(C).
    9. Costa, M. & Di Blasio, G. & Prati, M.V. & Costagliola, M.A. & Cirillo, D. & La Villetta, M. & Caputo, C. & Martoriello, G., 2020. "Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit," Applied Energy, Elsevier, vol. 275(C).
    10. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    11. De Bellis, Vincenzo, 2016. "Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation," Applied Energy, Elsevier, vol. 164(C), pages 162-174.
    12. Xu, Han & Gao, Jian & Yao, Anren & Yao, Chunde, 2018. "The effect of the energy convergence and energy dissipation on the formation of severe knock," Applied Energy, Elsevier, vol. 228(C), pages 1243-1254.
    13. López, J.J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Rampanarivo, F. & Libert, C. & Dabiri, M., 2021. "Advantages of the unscavenged pre-chamber ignition system in turbocharged natural gas engines for automotive applications," Energy, Elsevier, vol. 218(C).
    14. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    15. Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Xiao, Qiuhong & Liu, Yongzheng & Ma, Fanhua, 2024. "Performance, emissions and combustion analysis of hydrogen-enriched compressed natural gas spark ignition engine by optimized Gaussian process regression and neural network at low speed on different l," Energy, Elsevier, vol. 302(C).
    16. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
    17. Discepoli, G. & Cruccolini, V. & Ricci, F. & Di Giuseppe, A. & Papi, S. & Grimaldi, C.N., 2020. "Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air," Applied Energy, Elsevier, vol. 263(C).
    18. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    19. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    20. Wang, Du & Ji, Changwei & Wang, Shuofeng & Meng, Hao & Yang, Jinxin, 2019. "Chemical effects of CO2 dilution on CH4 and H2 spherical flame," Energy, Elsevier, vol. 185(C), pages 316-326.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2530-:d:783141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.