IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p907-d1034478.html
   My bibliography  Save this article

Development of a Model-Based Coordinated Air-Fuel Controller for a 3.0 dm 3 Diesel Engine and Its Assessment through Model-in-the-Loop

Author

Listed:
  • Loris Ventura

    (Energy Department, Politecnico di Torino, 10129 Torino, Italy)

  • Roberto Finesso

    (Energy Department, Politecnico di Torino, 10129 Torino, Italy)

  • Stefano A. Malan

    (Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy)

Abstract

The tightening of diesel pollutant emission regulations has made Internal Combustion Engine (ICE) management through steady-state maps obsolete. To overcome the map’s scarce performance and efficiently manage the engine, control systems must cope with ICE transient operations, the coupling between its subsystem dynamics, and the tradeoff between different requirements. The work demonstrates the effectiveness of a reference generator that coordinates the air path and combustion control systems of a turbocharged heavy-duty diesel engine. The control system coordinator is based on neural networks and allows for following different engine-out Nitrogen Oxide (NOx) targets while satisfying the load request. The air path control system provides the global conditions for the correct functioning of the engine, targeting O 2 concentration and pressure in the intake manifold. Through cooperation, the combustion control targets Brake Mean Effective Pressure (BMEP) and NOx to react to rapid changes in the engine operating state and compensates for the remaining deviations with respect to load and NOx targets. The reference generator and the two controller algorithms are suitable for real-time implementation on rapid-prototyping hardware. The performance overall was good, allowing the engine to follow different NOx targets with 150 ppm of deviation and to achieve an average BMEP error of 0.3 bar.

Suggested Citation

  • Loris Ventura & Roberto Finesso & Stefano A. Malan, 2023. "Development of a Model-Based Coordinated Air-Fuel Controller for a 3.0 dm 3 Diesel Engine and Its Assessment through Model-in-the-Loop," Energies, MDPI, vol. 16(2), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:907-:d:1034478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/907/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Armin Norouzi & Hamed Heidarifar & Mahdi Shahbakhti & Charles Robert Koch & Hoseinali Borhan, 2021. "Model Predictive Control of Internal Combustion Engines: A Review and Future Directions," Energies, MDPI, vol. 14(19), pages 1-40, October.
    2. Stefano d’Ambrosio & Alessandro Mancarella & Andrea Manelli, 2022. "Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps," Energies, MDPI, vol. 15(19), pages 1-17, September.
    3. Fabio Cococcetta & Roberto Finesso & Gilles Hardy & Omar Marello & Ezio Spessa, 2019. "Implementation and Assessment of a Model-Based Controller of Torque and Nitrogen Oxide Emissions in an 11 L Heavy-Duty Diesel Engine," Energies, MDPI, vol. 12(24), pages 1-19, December.
    4. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Mancarella & Omar Marello, 2022. "Effect of Coolant Temperature on Performance and Emissions of a Compression Ignition Engine Running on Conventional Diesel and Hydrotreated Vegetable Oil (HVO)," Energies, MDPI, vol. 16(1), pages 1-27, December.
    2. Zongyu Yue & Haifeng Liu, 2023. "Advanced Research on Internal Combustion Engines and Engine Fuels," Energies, MDPI, vol. 16(16), pages 1-8, August.
    3. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    4. Nhlanhla Khanyi & Freddie Liswaniso Inambao & Riaan Stopforth, 2025. "A Comprehensive Review of the GT-POWER for Modelling Diesel Engines," Energies, MDPI, vol. 18(8), pages 1-27, April.
    5. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    6. Luo, Pan & Gao, Kai & Hu, Lin & Chen, Bin & Zhang, Yuanjian, 2024. "Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material," Applied Energy, Elsevier, vol. 361(C).
    7. Betgeri, Vikram & Bhardwaj, Om Parkash & Pischinger, Stefan, 2023. "Investigation of the drop-in capabilities of a renewable 1-Octanol based E-fuel for heavy-duty engine applications," Energy, Elsevier, vol. 282(C).
    8. Roberto Finesso & Omar Marello, 2022. "Calculation of Intake Oxygen Concentration through Intake CO 2 Measurement and Evaluation of Its Effect on Nitrogen Oxide Prediction Accuracy in a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 15(1), pages 1-26, January.
    9. Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
    10. Natalia Duarte Forero & Donovan Arango Barrios & Jorge Duarte Forero, 2019. "Overview of Potential Use of Hydroxyl and Hydrogen as an Alternative Fuel in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 525-534.
    11. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    12. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Liu, Hongxiang & Han, Ling & Cao, Yue, 2020. "Improving transmission efficiency and reducing energy consumption with automotive continuously variable transmission: A model prediction comprehensive optimization approach," Applied Energy, Elsevier, vol. 274(C).
    14. Gowthamraj Rajendran & Reiko Raute & Cedric Caruana, 2025. "A Comprehensive Review of Solar PV Integration with Smart-Grids: Challenges, Standards, and Grid Codes," Energies, MDPI, vol. 18(9), pages 1-80, April.
    15. Katriina Sirviö & Seppo Niemi & Sonja Heikkilä & Jukka Kiijärvi & Michaela Hissa & Erkki Hiltunen, 2019. "Feasibility of New Liquid Fuel Blends for Medium-Speed Engines," Energies, MDPI, vol. 12(14), pages 1-10, July.
    16. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    17. Xiangyang, Wang & Yu, Liu & Xiaoping, Li & Fangxi, Xie & Beiping, Jiang, 2024. "Experimental study on improvement of air-dilution combustion performance of methanol engine by adjusting intake guide flappers, exhaust variable valve timing and split injection," Energy, Elsevier, vol. 313(C).
    18. Rocha, Déborah Domingos da & de Castro Radicchi, Fábio & Lopes, Gustavo Santos & Brunocilla, Marcello Francisco & Gomes, Paulo César de Ferreira & Santos, Nathalia Duarte Souza Alvarenga & Malaquias, , 2021. "Study of the water injection control parameters on combustion performance of a spark-ignition engine," Energy, Elsevier, vol. 217(C).
    19. Cheng, Tengfei & Duan, Ruiling & Li, Xueyi & Yan, Xiaodong & Yang, Xiyu & Shi, Cheng, 2025. "Progressive split injection strategies to combustion and emissions improvement of a heavy-duty diesel engine with ammonia enrichment," Energy, Elsevier, vol. 316(C).
    20. Dimitrios C. Rakopoulos & Constantine D. Rakopoulos & George M. Kosmadakis & Evangelos G. Giakoumis & Dimitrios C. Kyritsis, 2024. "Exergy Analysis in Highly Hydrogen-Enriched Methane Fueled Spark-Ignition Engine at Diverse Equivalence Ratios via Two-Zone Quasi-Dimensional Modeling," Energies, MDPI, vol. 17(16), pages 1-44, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:907-:d:1034478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.