IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p303-d306217.html
   My bibliography  Save this article

A Charge Possibility of an Unfueled Prechamber and Its Fluctuating Phenomenon for the Spark Ignited Engine

Author

Listed:
  • Nyamsuren Gombosuren

    (Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan)

  • Ogami Yoshifumi

    (Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan)

  • Asada Hiroyuki

    (Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan)

Abstract

The demand for internal combustion engines remains high for mobile power sources in all fields due to their low costs, running distance capacity, charging reliability, and heavy driving durability. However, air pollution, efficiency, and environmental factors make this more challenging. According to recent research, using a fueled prechamber can lead to lean combustion in the main chamber, resulting in increased efficiency, reduced fuel consumption, and reduced toxic emissions. However, difficulties in producing a fueled prechamber for commercial engines include mixture and soot formation problems in the limited space of the prechamber, and limited research on the charging possibility of the unfueled prechamber. A removable prechamber is advantageous for used vehicles because an engine redesign is not required. Therefore, we proposed to use an unfueled prechamber to enhance the lean burning efficiency of the spark ignited (SI) engine and explore the possibility of charging an unfueled, unscavenged prechamber with a fuel-rich mixture. Consequently, investigating the possibility of filling an unfueled prechamber with a fuel-rich mixture without additional fuel delivery or an air control system was the aim of this study. For this purpose, the charge flowrate of the centrally located unfueled prechamber is extensively investigated by using Computational Fluid Dynamics (CFD), through its design. As a result, a realizable charge flow was detected for the unfueled prechamber in two periods in the inlet and compression strokes. Most importantly, we found fluctuation phenomena in mass flow rates at the inlet stroke directing a charge flow of the richer mixture into an unfueled prechamber without additional systems. Moreover, keeping the charged rich mixture inside the prechamber during the compression stroke is as important as charging the prechamber with the fuel-rich mixture. The study will enable us to produce a removable prechamber to improve the combustion efficiency of port injected engines.

Suggested Citation

  • Nyamsuren Gombosuren & Ogami Yoshifumi & Asada Hiroyuki, 2020. "A Charge Possibility of an Unfueled Prechamber and Its Fluctuating Phenomenon for the Spark Ignited Engine," Energies, MDPI, vol. 13(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:303-:d:306217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
    2. Gentz, Gerald & Gholamisheeri, Masumeh & Toulson, Elisa, 2017. "A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization," Applied Energy, Elsevier, vol. 189(C), pages 385-394.
    3. Khatib, Hisham, 2012. "IEA World Energy Outlook 2011—A comment," Energy Policy, Elsevier, vol. 48(C), pages 737-743.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viktor Dilber & Momir Sjerić & Rudolf Tomić & Josip Krajnović & Sara Ugrinić & Darko Kozarac, 2022. "Optimization of Pre-Chamber Geometry and Operating Parameters in a Turbulent Jet Ignition Engine," Energies, MDPI, vol. 15(13), pages 1-21, June.
    2. Diego Perrone & Angelo Algieri & Pietropaolo Morrone & Teresa Castiglione, 2021. "Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration," Energies, MDPI, vol. 14(2), pages 1-28, January.
    3. Jiaying Pan & Yu He & Tao Li & Haiqiao Wei & Lei Wang & Gequn Shu, 2021. "Effect of Temperature Conditions on Flame Evolutions of Turbulent Jet Ignition," Energies, MDPI, vol. 14(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
    2. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    3. Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
    4. Lo Giudice Gino Moncada & Francesco Asdrubali & Antonella Rotili, 2013. "Influence of new fac tors on global energy prospects in the medium term: compar ison among the 2010, 2011 and 2012 editions of the IEA?s World Energy Outlook reports," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(3), pages 67-89.
    5. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    6. Hammam Aljabri & Mickael Silva & Moez Ben Houidi & Xinlei Liu & Moaz Allehaibi & Fahad Almatrafi & Abdullah S. AlRamadan & Balaji Mohan & Emre Cenker & Hong G. Im, 2022. "Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach," Energies, MDPI, vol. 15(23), pages 1-21, November.
    7. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    8. Zheng, Lukai & Cronly, James & Ubogu, Emamode & Ahmed, Ihab & Zhang, Yang & Khandelwal, Bhupendra, 2019. "Experimental investigation on alternative fuel combustion performance using a gas turbine combustor," Applied Energy, Elsevier, vol. 238(C), pages 1530-1542.
    9. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    10. Santiago Molina & Ricardo Novella & Josep Gomez-Soriano & Miguel Olcina-Girona, 2021. "New Combustion Modelling Approach for Methane-Hydrogen Fueled Engines Using Machine Learning and Engine Virtualization," Energies, MDPI, vol. 14(20), pages 1-21, October.
    11. Chang, Tsangyao & Gupta, Rangan & Inglesi-Lotz, Roula & Simo-Kengne, Beatrice & Smithers, Devon & Trembling, Amy, 2015. "Renewable energy and growth: Evidence from heterogeneous panel of G7 countries using Granger causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1405-1412.
    12. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Zhu, Sipeng & Akehurst, Sam & Lewis, Andrew & Yuan, Hao, 2022. "A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. He, Bang-Quan & Xu, Si-Peng & Fu, Xue-Qing & Zhao, Hua, 2020. "Combustion and emission characteristics of an ultra-lean burn gasoline engine with dimethyl ether auto-ignition," Energy, Elsevier, vol. 209(C).
    15. Yontar, Ahmet Alper, 2020. "A comparative study to evaluate the effects of pre-chamber jet ignition for engine characteristics and emission formations at high speed," Energy, Elsevier, vol. 210(C).
    16. Viktor Dilber & Momir Sjerić & Rudolf Tomić & Josip Krajnović & Sara Ugrinić & Darko Kozarac, 2022. "Optimization of Pre-Chamber Geometry and Operating Parameters in a Turbulent Jet Ignition Engine," Energies, MDPI, vol. 15(13), pages 1-21, June.
    17. Ju, Dehao & Huang, Zhong & Li, Xiang & Zhang, Tingting & Cai, Weiwei, 2020. "Comparison of open chamber and pre-chamber ignition of methane/air mixtures in a large bore constant volume chamber: Effect of excess air ratio and pre-mixed pressure," Applied Energy, Elsevier, vol. 260(C).
    18. López, J.J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Rampanarivo, F. & Libert, C. & Dabiri, M., 2021. "Advantages of the unscavenged pre-chamber ignition system in turbocharged natural gas engines for automotive applications," Energy, Elsevier, vol. 218(C).
    19. Muhammad Umar Farooq & Azka Amin & Sun Peng & Cem Işık & Ramaisa Aqdas & Muhammad Akbar & Gul Sabahat & Serdar Ongan, 2023. "Role of Innovations to Mitigate CO 2 e: Theory and Evidence for European Economies," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
    20. Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:303-:d:306217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.